

A. D. Thalhammer • Aaron Bradshaw • Aaron DeMent • Aaron Heinen • Aaron Mc Adam • Aaron Parker • Aaron Rodden • Abhin Sharma • Ada Lau • Adam Anderson • Adam Arvidsson • Adam Balkwill • Adam
Chow • Adam Dougal • Adam Fairhead • Adam Gormley • Adam Higgins • Adam Mayes • Adam Medici • Adam Murphy • Adam Nemeth • Adam Onishi • Adam Pachucki • Adam Roberts • Adam Stankiewicz •
Adam Stead • Adam Trepanier • Adem Aydin • Adewale Olaore Sam • Adi Zilberbuch • Adil Fattoumy • Adisa Nicholson • Aditya Vithaldas • Adriaan Groenenboom • Adrian Espinosa Trinidad • Adrian Furtuna •
Adrian Gimpel • Adrian Goddard • Adrian R. Perdomo • Adrian Yannuzzi • Adrianna Craff • Adriano Rocha dos Santos • Adrien Cuchet • Agung Nugroho • Agung Subroto • Ahmed Elmadah • Ahmed Magdi •
Ahsan R. Shami • Ahsen Abro • Ahzahafiz Nazari • Aida Viziru • Aidan Foster • Aint Myat Noe • Aireen Relucio • Aivaras Kasperaitis • AJ Bureta • AJ Webb • Ajay Prasannan • Akos Aladics • Al Davis • Alain Foidart
• Alan Menzies • Alan Ng • Alan Rice • Albert Larew • Alberto Aguilar • Alberto Pasian • Alberto Trivero • Alberto Vena • Alec Harrison • Alejandro Lazos • Alejandro Mohamad • Alejandro Salgueiro • Alek Manov
• Aleksandar Raspopovic • Aleksandra Hristov • Alena Sarakapud • Alesha Unpingco • Alessandro Maruccia • Alessandro Petrelli • Alessio ‘Zork’ d’Arielli • Alessio Vertemati • Alex Atienza • Alex Aubert • Alex
Bitsche • Alex Bryan • Alex Faundez • Alex Goetz • Alex Hommel • Alex Hopson • Alex Jegtnes • Alex Lagendijk • Alex Mironov • Alex Pisica • Alex Rock • Alexander Blackman • Alexander Cesar Luiz Costa •
Alexander Chongwa Bede • Alexander Dawson • Alexander Haase • Alexander Kaiser • Alexander Kazachkov • Alexander Race • Alexander Rauscha • Alexander Rehm • Alexander Stepanov • Alexander Wicht
• Alexander Winkler • Alexandra Chaussé • Alexandra Leroy • Alexandre Le Hégarat • Alexandre Rizzuti • Alexey Dantsev • Alexey Gabychev • Alexey Kasaev • Alexia Vanek • Alexis Sgarbossa • Alexndra Burd
• ali gezginoglu • Ali Kash • Alice Bramucci • Alicia D. Lauerman • Alicia Fernández Franco • Alina Georgiu • Alisia Stasi • Alistair Craig Nel • Alistair Tweedie • Alla Gringaus • Allen Liu • Allen Mak • Allison Cam-
eron • Allison Ko • Almudena Tabernero • Alvaro Jose Marenco-Ramirez • Amber Amke De Muelenaere • Amber Campeau • amber chutich • Amber Weinberg • Amedeo Fabrizio • Amélie Husson • Amirhossain
G. Tabatabai • Amit Daliot • Amit V Ghodgaonkar • Amjid Rasool • Amy Callinan • Amy Kvistad • Ana Alcañiz • Ana Maria Velez • Anatoly Brzhezinskiy • Anders Buch-Jepsen • Anders Gustavsson • Anders Heim
• andi marza • André Buck • André Grobbee • Andre Jilderda • André Kvist Aronsen • André Romão • Andrea Canton • Andrea Downey • Andrea Melzi • Andrea Novi • Andrea Saccà • Andrea Seves • Andreas
Edin • Andreas G Pagitz • Andreas Gillberg • Andreas Gyo • Andreas Løseth • Andreas Mayr • Andreas Wieser • Andrei Duca • Andrei Nastasa • Andrés Laplace Kellogg • Andrew Ckor • Andrew Edwards • Andrew
F. Broman • Andrew Francke • Andrew Goh Wei Li • Andrew J Holden • Andrew James Fish • Andrew Komoder • Andrew Kozinets • Andrew Laws • Andrew MacLeod • Andrew Manullang • Andrew Morgan •
Andrew Morrissey • Andrew Peel • Andrew Ringler • Andrew Rohling • Andrew Sliver • Andrew Spott • Andrew Strong • Andrew Walker • Andrew Winterbauer • Andrewus Holmes • Andrey Zanev • Andris
Dinsbergs • Andy Bunyan • Andy Crone • Andy Greer • Andy Ingle • Andy J Reading • Andy Poole • Andy Price • Angel D. Sevilla • Ángel Liska • Angela Hanshaw • Angelica Bäckström • Angelo Beltran • Angus
Eggo • Anise Lamontagne • Anita Henderson • Anka Wolbert • Ankur Agarwal • Ann Mathilda Laksana • Ann-Kathrin Hietkamp • Anna Fuster • Anna Kalata • Anna Ladoshkina • Annika Lindstedt • Anthony Firka
• Anthony Forier • Anthony Jeffery • Anthony Monori • Anthony Montalbano • Anthony Roose • Antoine Llorca • Anton Shevchuk • Anton Tibblin • Antonio Carrión González • Antonio Lopez Martin • Antti Leiviskä
• Antxoa Ainhoa Iglesias • Apeland Informasjon • Ariel Martinez Sabido • Ariel Zeta • Arjan Snaterse • Arkady Kuznetsov • Arnaud • Arnaud Steckle • Arne Wagenfeld • Arno Weterings • Arnold Zokas • Arron
Green • Artem Pereverzev • Arturo Martín • Arun Krishnan • Ashley Harper Cottrell • Ashley Morgan • Ashley Shaw • Ashwin Chandrasekaran • Athanasia Makrygianni • Attila Simon • Aubrey Kenneth Knight •
Austin Vach • Ayaz Karim • Aynolor • Babur Rakhimov • Bagshik Ghulumian • Barb Murphy • Barbara Laird • Bart Jan Hoekman • Bart Jochems • Bas Verhoeven • Bastiaan Rasing • Bastian Fritsch • Bastian Stein
• Bastien Heynderickx • Bastien Rentsch • Baumann Martin • Bea Hortopanu • Beda Steinacher • Ben Bonifant • Ben Brandt • Ben Brocka • Ben Coleman • Ben Dubuisson • Ben Kim • Ben Orchard • Ben Parker
• Ben Sciascia • Ben Scott • Ben Seymour • Ben Vaughan • Ben Watts • Ben Web • Ben Wilkinson • Bendix Sältz • Benedikt Breinbauer • Benjamim Diogo Alves • Benjamin Denis • Benjamin Howe • Benjamin
Klaile • Benjamin Lake Hamilton • Benjamin Royer • Benjamin Ulstein • Benjamin Zach • Benny Jien • Benny Peckruhn • Beno Rudolf • Benoit Chabert • Benoit Pontbriand • Bernard De Luna F da F Bittencourt •
Bernard Leong • Bernd Große Lordemann • Bernd Hort • Bert Hofmänner • Bertrand Dufresne • Beth Soderberg • Bhooshan Pandya • Biko Tushinde • Bilegsaikhan Baasanjav • Bill McLees • Bill Streckfus • Bindi
Raval • Binson K. Joseph • Birkan Inan Sunay • Birtalan Laszlo • Bjarne Dahlin • Bjorn Decock • Błażej Pawlak • Bli Dodi • Bob Berlijn • Bob Koon • Bogdan Štelcar • Bojan Kalajdzic • Bonnie C. Ryan • Boris Čupeljić
• Boy van Meer • Brad Robinson • Bradley Leimer • Bram Stege • Brandon Congleton • Brandon Grant • Brandon M Diaz • Brandon Renfrow • Brandon Shackelford • Brant LeClercq • Braunson Yager • Brendon
Westlake • Brent Charles Patroch • Brent Garner • Brent Larson • Brent McMillan • Brent Nims • Bret Sutherland • Brett TL • Brian Artka • Brian Corchiolo • Brian G. Davis • Brian Grogan, Mary SInnott • Brian H.
Stanko • Brian Housel • Brian Kenwell • Brian Lee • Brian Sewell • Brian Webster • Briane Samson • Brice Gouban • Bridget Overson • Bronson Dunbar • Bruce W. Spurr • Bruno Cantuária • Bruno CHIREZ •
Bruno Durao • Bruno Felicio • Bruno Maranhao • Bruno Tavares Monteiro • Bruno Tournet • Bryan T. Innes • Bryant J Littrean • Brynjar Guðnason • Burak Yigit Kaya • C. Robert Dudley III • C. Ryan Bell • Çağlar
Atambay • Cail Borg • Caio Costa • Caleb Copper • Caleb Kester • Caleb M Fennell • Cameron McHenry • Candice Dunlap Miller • Cao Tan Khoa • Carina Silfverduk • Carl Saunders • Carla Gomez • Carlin Scuderi
• Carlo Daniele • Carlos Geijo Gala • Carlos M Jurado Rivera • Carlos Rodríguez Reyes • Carlos Varela • Caro Milkez • Carol A Spencer • Carolyn E. Lee • Carrie Sapp • Carsten Reichel • Cary Enoch Reinstein •
Casey Pachota • Catalin Fertu • Catherine Catt Small • Catherine Azzarello • Catherine McCuistion • Catherine Reijans • Cathy Hofknecht • Cesar Raymond Santos • Chad Allen • Chad Brokaw • Chad Johnson
• Chad Solomon • Chad Whitt • Changjin Lee (Kyo) • ChangYong Hyun • Charl Kruger • Charlène Fournier Julien Laurent • Charles Boyung • Charles Cousins • Charles Ka‘a Kihe • Charles Ko • Charles Schomak-
er • Charlie Bailey • Charlie Bob Gordon • Charlotte Vazquez • Chathura Asanga Kulasinghe • Chelsie Regan • Chen-Loon Chan • Cheryl Berumen • Cheryl Reiter • Ches Spencer • Chih-Liang Yeh • Chris Ander-
son • Chris Bond • Chris Christenson • Chris Da Sie • Chris Heath • Chris Hebron • Chris Huxley • chris mack-riddell • Chris Mavricos • Chris Mc Roberts • chris muzilla • Chris Rieger (ChRieger) • Chris Rolle • Chris
Smallwood • Chris Vernon • Chris Walsh • Chris Weiser • Chris Wigley • Chris Yoko • Christhian & Elena Pinedo • Christiaan Mutschelknauss • Christian Baker • Christian Bellemare • Christian Denat • Christian
Gravelle • Christian Grimsgaard • Christian Hemesath • Christian Kuhn • Christian Notdurfter • Christian Rutz • Christian Saur • Christian Swinnen • Christian Takle • Christian Vito Crocenzi • Christian Wübbeling
• Christiano Anderson • Christina Griffis • Christina M. Bennett • Christine Toh • Christoph Hänsgen • Christoph Hoppen • Christophe Bouillon • Christophe Guilcher • Christophe Lamarlière • Christophe Ron-
calli • Christopher Cressman • Christopher Falzone • Christopher Grantham • Christopher Janzen • Christopher Mitchell • Christopher Morgan • Christopher Paul David Johnson • Christopher Roy • Christopher
Smoak • Christopher Zebrowski • Christy Kiltz • Chye Fong Yee • Cicero Monteiro • Cindy Dykstra • Cindy Kendrick • Cindy Leschaud • Citra Pramadi • CL Holly • Claire Louise Patterson • Claire Wong • Clark
Birkelund • Claudius Kirsch • Claus Harup • Claus Heller • Clement Ng • Clint Kolodziej • Clive Walker • Clyde Alegro • Cody Hinze • Cody VerKuilen • Cole E. Audett • Colin Esch • Colin Watts • Conrad Borba •
Conrad Mucklar • Corbin Fraser • Corey Dinkens • Corie McWain • Cory Taylor • Courtney Fantinato • Craig Dennis • Craig Russell • Craig Taylor • Criss Ong • Cristhian Serur • Cristian Nicolescu • Cristian Radu
• Cristian Romero • Cristiane Andretta Evans • Cristiano Baptista • Crystal L. Pizarro • Curtis Lee Hall • Cynthia Ann Phillips • D. Decobecq • D.J. Schoone • Dainis Šantars • Dakota Hopkins • Dale Hurley • Dalibor
Daki Bogicevic • Dallas McCluske • Damian Hong • Damiano Seno • Damien Oh • Damien Petitjean • Damien Petrilli • Damien Van Der Windt • Damir Francišković • Dan Allen Pantinople • Dan Christopher • Dan
Edwards • Dan Garfield • Dan Gramada • Dan Greene • Dan Kellett • Dan Leech • Dan Shilov • Dan Trewartha • Dane Eldridge • Dane Matthews • Dáni Botond • Dani Olivan • Daniel abercrombie • Daniel Baren-
kamp • Daniel Block • Daniel Byrne • Daniel Campo • Daniel Dentone • Daniel Furtado • Daniel Hug • Daniel Koskinen • Daniel Kurdoghlian • Daniel La Corte • Daniel Lauding • Daniel Marcos Perujo • Daniel
Martin Weiß • Daniel Müller • Daniel P. Miller • Daniel Puglisi • Daniel Römer • Daniel Schmid • Daniel Senn • Daniel Smith • Daniel Soelberg • Daniel Troconis • Daniele Leoni • Danielle Olson & Lance Dice •
Danielle Steussy • Danielle T Wu • Danne Lundqvist • Danny Baggs • Danny Hoogendoorn • Danny Uranka • Darby Merry • Dardion • Darin Lynch • Darko Antić • Darren B • Darren Puscas • Darwin Witt • Daryl
Camfield • Daryna Ignatieva • Dave Cunningham • Dave Kinsella • Dave Myers • Dave Nicholson • Dave Schmidt • David ‘daze’ Leclercq • David ‘Neld’ Kinoranyi • David Alexa • David Alphen • David Arromba •
David Bennett • David Cassidy • David Claes • David Correa • David Dahlström • David Dale • David Dawes • David Dias • David Domínguez • David Edward Watt • David Emanuel Oprea • David Fiske • David
Hagman • David Hardcastle • David Haustraliaer • David Holladay • David Houstek • David J. Dekker • David Jenkins • David Johnson • David Klawitter • David Knaack • David Kwong • David Lee Ritter • David
Llado • David May • David Mulholland • David Nollert • David Ozee • David Pak • David Pascual Rocher • David R. Hankes • David Radisić • David Seeley • David Takahashi • David Watson • David Watts • David
Wilson • Davood Torabzadeh • Dawid Leśniak • Dawn R. Gilbert • Dawn Walker • Dean Breyley • Debbie Rouleau • Deborah Palmer McCain • Dejan Veljanoski • Delphine Pagès • Denis Blömer • Denis Homich
• Denis Liger • Denise Eng • Denise Williams • Dennis Andersson • Dennis Bressendorf Mathiasen • Dennis Jacobs • Dennis Rosskopf • Denny Dzulkarnaen • Denver Asence • Denys Dyachuk • Denys Mishunov
• Derek Claussen • Derek McDonald • Derek Misler • Derick Baker • Devin & Kevin Rajaram • Devon Crosby • Dhanish Gajjar • Dhimas Ronggobramantyo • Dian & Adan Johnson • Diana Quartin • Dianne Broere
• Dick de Leeuw • Didier LIMA • Diederik van Prooijen • Diego Marcos • Dieter Vanhalst • Dima Feldman • Dimitri Kouvdis • Dimitri Verstraeten • Dimitrie Hoekstra • Dimitrios Tsiodoulos • Dinesh Singh Rawat •
Dirk Martin • Djouwad Hadj-Henni • Dmytro Svarytsevych • Dnyanesh Mankar • Dolf van Munster • Domenico Bartolomei • Domhnall Egan M.Sc. • Dominic Lord • Dominik Bauer • Dominik Deobald • Dominik
Leusmann • Dominik Mertz • Dominik Rymsza • Dominik Schläpfer • Don Barnes • Don Jones • Donn Maguire • Donna J. Wilson • Donovan Abrey • Dor Reich • Doug Barned • Douglas Brull • Dr Dave Turnbull •
Dr. Christian Lund • Dragos Liviu Crintea • Drew Fravert • Dries Vandenhoeck • Duke Yong Lee • Duncan MacKenzie • Đurica Bogosavljev • Dustin Kraus • Dustin Staiger • Dusty Miller • Duver Jaramillo • Dwight
Rush Taylor • Dwight Nagy • Dzulhelmi Jumat • E. Helen Burgess • Earl Quenzel • Ecaterina Moraru • Ed Agustin • Edgar Cornejo • Edouard Lavery-Plante • Edson Simao Jr. • Eduardo San Román • Edward Pal-
omo • Edwin Duinkerken • Edwin van Leeuwen • Eelco R. Claassen • Ege Görgülü • Egon Okerman • Eileen Kessler • Eileen Puge • Eileen Webb • Einat Lotan-Kochan • Eirik Rabben Igland • Eitje Fischer • Eivind
Birkedal • Elif Bayrasli • Elisabeth Engl • Elisabeth Häußler • Eliska Krcmarova • Elizabeth Martini • Ellen Deketele • Elrond Cheung • Emanuel Oprea • emanuela damiani • Emil Brann • Emil Säll • Emiliano Mana-
corda • Emily Berry • Emir Biscevic • Emma Balitski • Emma Davis • Emma Gallagher • Emmanuel Parfond • Enea Berti • Enrico Gebauer • Enrico Lummitsch • Enrique Nuño Alegre • Eric A Olsen • Eric Appleby •
Eric Blosch • Eric Brooke • Eric Camilleri • Eric Galand • Eric Josue • Eric Lau Ching Lung • Eric Liang • Eric Mantooth • Eric Pena (Frank Pen) • Eric Sollinger • Eric Zwart • Erica R Brandt • Erik ‘knugen’ Johansson
• Erik Herbert • Erik Loehfelm • Erik van Elderen • Erik van Kammen • Erika Jarvi • Erin Bartholomew • Ernesta Orlovaitė • Erno Ere Tuovinen • Erwin Liemburg • Erwin Romkes • Etienne Bruwer • Ettore Russo •
Eugen Kuschnir • Eugene Miles • Eustaquio Rangel • Evert Semeijn • Evgeny Morozov • Evgeny Saltykov • Evgeny Shcherbinin • Ewout Callens • Fabian Beiner • Fabio Anziani • Fabio Candido • Fábio Coelho •
Fabio Rose • Fabio Volpe • Fábio Zuppone Chavasco • Fabrizio Ortis • Fadi Ammari Sánchez-Villanueva • Fae Daunt • Faidon Loumakis • Fair Marketing • Faith Chan • Faizal Al Amri • Farid Abdurrahman •
Febby Gunawan • Federico Vezzoli • Felicia Betancourt • Felicia Niemeier • Felip Ladron Pijuan • Felix Osina • Felix Zapata Berlinches • Fernando Viadero Villanueva • Fero Volar (alian) • Filip Brocke • Filip
Gielda • Flavien Allenspach • Flávio Banyai • Flo Gehring • Flor Antara • Florent Ferry • Florent Vielfaure • Florian ColdDevil Weßling • Florian Brandt • Florian Dufour • Florian Gustin • Florian Herrmann • Florian
Lindner • Florian R. Wagner • Florian Rehder • Florian Schuhmann • Florian Walch • Florian Warnecke • Floris van der Haar • Flow Wobo • Forrest Nutter • Forrest Smith • Frances de Waal • Francesco Agnoletto
• Francesco La Macchia • Francesco Lurati • Francesco Piardi • Francis Boudreau • Francisco J. García Sánchez • Francisco Oliveros • Franco Daniel Averta • Frane Gorjanc • Frank Adler • Frank Dahle • Frank
Gjertsen • Frank Heppner • Frank Kilian • Frank Lindner • Frank Mooren • Frank Thelen • Frank Ulatowski • Frans van Engelen • Franz Brummer • Franz Vilsmeier • Fred Onis • Fred Wu • Frederic Fauvel • Fred-
eric Hansen • Fredric Castelius • Frincu Andrei • G. Brad Hopkins • Gabor Csaranko • Gabor Panczel • Gabriel Gato Garcia • Gabriel Ichirei Grigoras • Gabriel Svennerberg • Gaiachik • Garrett Andres • Garrett
Scafani • Gary Bastoky • Gary Griffiths • Gary Swanepoel • Gautam Chadha • Gautam Gupta • geert kempen • Genessa Ottomann • Geng Gao • Georg Dittrich • George Bardis • George John Szubinski • George
Kyriacou • Georges Reuland • Gerald Foo • Gerardo Lagger • Gerben Peet • Gerben Snellenberg • Gerd Wippich • Gereon Godde • Geries Handal • Gerrit Böhm • Gerrit Hillebrand • Gert Claus • Giacomo
Eineki Magisano • Giân Miller • Giang Do • Gianluca Riboni • Gianmaria Vitale • Gianpaolo Lorusso • Gilbert Bagaoisan • Gildas Marot • Gilles Hoarau • Gines Alabi Muñoz • Giovanni Cuccu • Giovanni Di Grego-
rio • Girish B • Giulia Tesser • Giuliano Riccio • Giuseppe Farina • Glen McNiel • Glenn Drain • Goh Beng Keong • Gökçen Öğütçü • Gokhun Guneyhan • Gonzalo López Serantes • Gordon Chiam • Goro Harumi
• Gottfried Ryser • Graham Bowman • Grant Doyle • Grant McCauley • Greg Bruening • Greg Frey • Greg Lynch • Greg Reemers • Gregor Swatek • Gregory & Kathryn Davis • Grégory Argenton • Gregory Favre
• Gregory Hewes • Grégory Raby • Grischa Stanjek • Grzegorz Herrmann • Guido Smeets • Guil Hernandez • Guillaume Bourdages • Guillaume Krystlik • Guillaume Maze • Guillaume Tremblay • Guillaume
Voisin • Guillermo Neugebauer • Guirec Lefort • Gunnar Geir Jóhannsson • Gunnar Jäckel • Gunnar Velle • Guohui Xin • Gustav Strömberg • Gustavs Cirulis • Guus van Velthoven • György Bolla • Haddon Givens
Kime • Hamid Abouei • Hanif Nouhi • Hannele Piirainen • Hannes Holste • Hannes Siller • Hans J Nücke • Hardanny Hananto W • Harley Mills-Thom • Harri Kilpiö • Harry Bevan • Heather Bryant • Heidi Tegdan
Skinningsrud • Heiko Krebs • Hein Axel • Heinz Aimer • Helen Arvanitopoulos • helen hanssen • Hélio Correia Lima Neto • Hendrik Drent • Hendrik Morkel • Henk Jan Verlinde • Henning Grote • Henny Indri-
anty • Henrik Engqvist • Henrik Ziegenhain • Henry Everett • Henry Morgan Halliday Winn • Henryk Hruszka • Hernan Pereyra • Hisman Nata Saputra • Holger Zscheyge • HollyAnn Carbino • hongliang lu • Horst
Gutmann • Howard Burke • Huang Yu • Hudson-Peralta • Hugo Chouinard • Hugo Douchet • Hutze • Hygor Budny • Hyo Jae Lee • I Gede Panca Sutresna • Iain Robinson • Ian Billage • Ian Caie • Ian Ebden • Ian
O’Neill • Ian Smith • Ian Young • Iancu Vladi • Ibe Vanmeenen • Ichsan Fachreza • Igors Brezinskis • Iivari Leinonen • Iker Telleria & Family • Iljauskas Pakauskas • Imad Rajab • Imran Khan • Ines Gamler • Ingmar
Eschli • Ingo Herbote • Ingo Wonner • Ioannis Belegrinis • Ion Ceban • Ionut Zamfir • Ira Siegel • Irfan Toni H • Irina M. Franch • Irma Motta • Isaac James • István Tóth-Tarnawa • Itai Nathaniel • Ivan Derevenskikh
• Ivan Hayden Caleb • Ivan Razine • Ivan Spasenovic • Ivan Zelenovsky • Ivelin Belchev • Ivo Boerdam • Ivo Boerdam • Izvor Simonović • J. Pedro Ribeiro • J. Ryan DeCourcey • Jacek Siedlaczek • Jack Qi • Jack
Stenson • Jacob McCurdy • Jag Bhachu • Jaimie Zellner • Jaka Certanc • Jake Bui • Jake Dowie • Jakob Cosoroabă • Jamal Moghrabi • James A Love • James Achilles • James Bonham • James D Wright • James
Dalman • James Dixon • James Kind • James Langdon • James Michael Smith • James Murgatroyd • James Naden • James Prince • James Wilcox • James Young • Jamie Huskisson • Jamie Rushton • Jamie Z. •
Jan Albert Vroegop • Jan Brinkmann • Jan Erich V. Calderon • Jan Filas • Jan Florian Dietrich • Jan Jørgensen • Jan Lai Ming Chuen • Jan Libic • Jan Mateboer • Jan Nico van Oosten • Jan Quintelier • Jan Revet
• Jan Schelstraete • Jan-Claas Dirks • Jan-Hendrik Willms • Jan-Philipp Horn • Jana audrien Zemke • Janko Car Vukotic • Jared Bacik • Jared Fraser • Jared Hippensteel • Jarmo Annala • Jaryl Sim • jashu wal-
czy • Jason ‘Jhadur’ Trump • Jason Ang • Jason Baker • Jason Bourne • Jason Bryner • Jason Csizmadi • Jason de Villa • Jason Donald • Jason J Chen • Jason Jonty Rhodes • Jason Koning • Jason Nissen •
Jason Roberts • Jason Ryan • Jason Shoreman • Jason Sleeman • Jasper Zonneveld • Javid Ahmadi Appfy • Javier Don Escobar • Javier Vasquez • Javier Zerbino • Jaws Wong • Jay Kaushal • Jaya Jiwatram •
JB Woodruff • Jean Smithe • Jean-Marie Lafon • Jean-Paul Rossetti • Jean-Philippe Pagès • Jean-Sebastien Legault • Jeanne Nyegaard • Jeannie Voirin-Gerde • Jeff Bleitz • Jeff Golenski • Jeff Kent • Jeff
Neely • Jeff Woodruff • Jeffrey V Newman • Jelle Schut • Jen Frazer • Jeni Cecil Feeser • Jenn Honnery • Jenna Zetisky • Jennifer Cheng • Jennifer dela Cruz • Jenny Fremlin • Jens Alexander Quadt • Jens
Grochtdreis • Jens Klaerner • Jens Schellhase • Jenya Yelyashkevich • Jeppe Mariager-Lam • Jerad Burley • Jeremiah Konrad T. Bautista • Jeremias Dombrowsky • Jeremy Bell • Jérémy Domingo • Jeremy
Koppin • Jeremy Paul Freehill • Jeremy Richard Wiles • Jeremy Tarpley • Jeroen Boersma • Jeroen de Bruin • Jeroen Klomp • Jeroen Kuijpers • Jeroen Peerbolte • Jeroen Peters • Jeroen Ransijn • Jeroen Verbeek
• Jérôme Weber • Jess D. Hines • Jesse Fisher • Jessica Nance • Jessica Wohlgemuth • Jie Zhang aka Florian • Jim Schaedla • Jo Bjørnar Hausnes • Joachim Neve Nørgaard • Joachim Stehmann • Joakim An-
dersson • Joakim Bengtson • Joanna Kowalska • João Carmona • João Caymmi • João Ferreira Santos • João Leno • João Sardinha • Joe Galicia • Joe Suchy • Joe-Kristen-Addyson Clark • Joel Gerhold • Joel
Trevor Bantly • Joel Warren • Joep Stender • Joey J Carey • Johan Buhl • Johan Eklund • Johan Kivi • Johan Ruokangas • Jóhann Guðbjargarson • Johdi Ananmalay • John A Bailey • John Angelo • John Cham-
bers • John Cole • John Cranston • John Farrelly • John Hoang • John Imperio • John Maillard • John Markey • John McGarrah (FreshmasterJ) • John Meade • John O’Neal • John Ossoway • John R. Grayson •
John Roos • John Sundberg • John Velasco • John Warren • Johnathan Barrett • Johnathan Tan Tze Chiang • Johnny Nguyen • Jon Billett • Jon Blumenfeld • Jon Hawken • Jon Larie • Jon Ochoa • Jon Quinby •
Jon Smith • Jon Swainson • Jona Kalkus • Jonah Merchant • Jonas Eberhardt • Jonas Lekevicius • Jonas Parnow • Jonas Stüdemann • Jonas Thommen • Jonas Thoursie • Jonatas Miguel • Jonathan Ablanida •
Jonathan Bardo • Jonathan Billen • Jonathan Dwinell • Jonathan Frutos Rodrigo • Jonathan Hoomes • Jonathan Hsieh • Jonathan Kempf • Jonathan Lorentzen • Jonathan Markevich • Jonathan Pidgeon •
Jonathan Rhine • Jonathan Smit • Jonathan Yang XiaoYong • Jone Vistnes • Jonny Janiero • Jordan Berkow • Jordan Panagsagan • Jordan R. • Jordi Roig López • Jörg Linder • Jörg Pechau • Jorg Ruis • Jörg-
Steffen Claß • Jorge Fernando Rumoroso Solana • Jorge Girao • Jorge Morales @jorch • Jorge Romera • Jorgen Verweij • Jorijn Schrijvershof • Jorrit Diepstraten • Jos van der Veen • José Carlos Camposano
Koppel • José Correa • José Ney Guerrero • Josef Strapac • Joseph Agresta • Joseph Brumley • Joseph Chen • Joseph Jerry Martinez • Josephine Tomoe Seyfferth • Josh Levesque • Josh Marinacci • Josh Matz
• Josh Orum • Joshua Benjamin Rehman • Joshua Button • Joshua Li • Joshua R. Davis • Joshua Romero • Joshua Schober • Joshua Stevens • Josuel B Guimarães • Jourdain Julien • Joyce C. M. Herben • JR
Key • Juan Díaz-Bustamante • Juan Diego Garcia Quiroga • Juan F. Weitz Rotter • Juha T Lehtonen • Juhani Viitanen • Juho A. Juutilainen • Jukka Fordell • Jules Delisle • Jules Webb • Julia Benson-Slaughter •

Julia Grace Reeves • Julia T • Julian D’Aquila • Julian Gaviria • Julian Taverner • Juliana Gaiba • Julie Urbans • Julie Vandebosch • Julien Borrel • Julien Lafitte • Julien Le Thuaut • Julien Paroche • Juraj Kiss •
Jurgens Banninga • Jussi Reponen • Justin Foster • Justin Maxwell • Justin McCall • Justin Merrell • Justin Oliver • Juthamas Vadhanapanich • Kai Laborenz • Kam Diba • Kamel Messaoud • Kåre Roager • Kari
Anne Schuss • karl beck • Karl Fischer • Karl Herger • Karolina Jakubiak • Karolina Jamula-Mucha • Karsten Asshauer • Karsten Schempp • Karun Warapongsittikul • Kaspars Bulins • Kasper Friis Christensen •
Kate Pickman • Katharina Meiners • Kathryn Gough • Kathryn Hayden • Katie Nelson • Kaung Htet Zaw • Ke Chang • Keaton Newman • Kees Dijkstra, Hantum Frl. • Keiichi Shimamura • Keiko • Keith Paterson •
Keith Willsey • Kel Corbett • Kelly Bridges • Kelly Bridges • Kelly Ford • Kelly Green • Kelly Heard • Kelly Warpechowski • Kelvin Ling • Kenneth Chen • Kenneth Kilgore • Kenneth Schultz • Kent L. Weitkamp •
Kerrin Strevell • Kerry Malone • Ketil Christensen • Kevin • Kevin & Bridgette Parsons • Kevin Bedard • Kevin Behrens • Kevin Hodges • Kevin Kendle • Kévin Kgaut Gautreau • Kevin leDoux • Kevin Liew • Kevin
Morssink • Kevin Scott Graham • Khai Jace Neuberger • Kia Wright • Kiko López-Ron • Kim Johannesen • Kim Olenius • Kim Schiller • Kin Chui • Kirill Grishanin • Kis Kovács Botond • Kishan Jeetun • Klaus Riegler
• Klaus Thenmayer • Klevis Miho • Korjan van Wieringen • Korneel De Feyter • Kossa Audi Prasena • Koubič & Škraby • Kris Olszewski • Krishan Taylor • Kristian Samuel-Camps • Kristof Van den Eede • Krzysztof
Gibek • Krzysztof Zawada Zawadzki • Kung Chai • Kunnal Motwani • Kurt Beheydt • Kurt Maet • Kurucz Csaba • Kyle Keeling • Kyle Phelps • Ladd Greene • Lakaniemi, J. • Lance Hendershot • Larry Bucio • Larry
Clerk • Larry Shields • Larry Wanzer • Lars Roschek • Lars Smit • Lars Tutnjevic • Lasha Krikheli • Laszlo Heves • Laszlo Tamas • Laura Copenhaver • Laura Mosconi • Laura Nevo • Lauren A. Mier • Lauren Robinette
• Lauren VanZandt • Laurence Gatinel • Laurens Peeters • Laurent Albertini • Laurent Delamarre • Laurie Craig • Lazzaretto Autogestito • Le Nguyen Anh Khoa • Leander Conradie • Lee Fitzgerald • Lee Head •
Lee MacLeod • Lee Neilson • Lee Stearns • Leen Hubau • Leo A. Novelli • Leo Fisher • Leo-Matti Lehtonen • Leon Jay • Leonard Wojtek Pronobis • Leonardo Assennato • Leonardo Domingues Schlossmacher
• Leonardo Ferreira • Levi Flair • Lian Tze Lim • Liina-Maria Vaker • Lindsey Campbell • Linus Metzler • Lionel Rudaz • Lisa Ernst • Lisbeth Davies • Logan Bogard • Loic Herblot • Lora Parker Cermola • Loreley
Petroiu • Lorie Bolen • Lorraine Pocklington • Louis André • Luc Dubay • Luca Ambrosi • Luca Dolci • Luca Quattrin • Luca Salvini • Luca Scalvi • Luca Trifero’ • Lucas Cobb • Lucas Petes • Lucas Prim • Luciano
Mosteirín • Lucie Mackova • ludder • Ludovic Thomas • Luis Febles • Luis Munoz Zuniga • Luis Nishimura • Luís Sousa • Luisa • Luka M • Lukas Maciolek • Lukasz Gladki • Luke Cassidy • Lutter Régis • Luuk
Dingemanse • M. Sean Molley • M.Stichelbaut • Maarten Katoen • Maarten Princen • Maarten Raaijmakers • Maarten Reijgersberg • Macartisan • Maciej Kłodaś • Maciej Skrzypczak • Maciek Szczesniak • mad-
eschodt • Madhav Raina-Thapan • Mads Madsen • Magnus von Brömsen • Mai Anh Vu • Maik Derek • majiera manuhara • Malou Geurts • Manfred Oeding • manionramasamy • Manuel Camara Sanchez • Manuel
Garcia • Manuel Matuzovic • Manuel Portela • Manuel Schmid • Manuel Seemann • Manuel Vicedo • Marc Berthiaume • Marc Buse • Marc Rinderknecht • Marc-André Lavigne • Marcel Havenith • Marcel Maurice
Naef • Marcel Tanaka • Marcello Palmitessa • Marcelo Zagal • Marcin Herda • Marcin Wisniowski • Marco D’Ascenzo • Marco Fischbach • Marco Garre • Marco Godles • Marco Grüter • Marco Hagemann • Marco
Marasco • Marco Parenzan • Marco Pavan • Marco Pereirinha • Marco Pergola • Marco Rozzoni • Marco Salatin • Marcos de la Vega Seco • Marcus Bieber • Marcus Feital • Marcus Karbacher • Mareen Schubert
• Marek Lerche • Marek Levak • Margarida Saraiva de Carvalho • Maria Costea • Maria Emerson • Maria Francesca Gabrielle Alarcon de Jesus • Maria Paula Mariani • Mariana Conte • Marianne Butler • Marianne
Cora • Maricar Stubley • Marie Guillaumet • Marie-Andrée Roger • Marie-Ange Lutz • Marijan Šnajdar • Marinella Dal Sasso • Maringa Emons de Vries • Mario Santos • Mario Sommer • Maris Kiselovs • Māris
Krūmiņš • Marius Craciunoiu • Marius Kelmelis • Mariusz Cieśla • Mark ‘Tayemaker’ Taylor • Mark Allman • Mark Anderson • Mark Haller • Mark Hedberg • Mark Maglio • Mark Myers • Mark O’ Malle • mark oliver
hawkins • Mark Pietraszuk • Mark Pridham • Mark Sost • Mark Strayer • Mark W. Taylor • Marko Bajlovic • Marko Rapaic • Marko Srdoč • Marko Zabreznik • Markus ‘burgi’ Burgthaler • Markus Fassold • Markus
Seegmüller • Markus Thielen • Marlyn Tadros • Marsha Wakabayashi • Marta Armada • Marta Hernández Rodríguez • Martin Bryce Randall • Martin Cartwright • Martin Gorenflo • Martin Hathaway • Martin
Heiselberg • Martin Oswald • Martin Rädlinger • Martin Sitar • Martin Stark • Martina Camps y Espinoza • Martino di Filippo • Martino Palladini • Mārtiņš Vaitkevics • Maryhellen Segatta • Masha Kandler • Mas-
simo Mezzini • Massimo Nastasi • Máté Tóth • Matej Janovčík • Matej Lukin & Timon Leder • Mateusz Romanowski • Mathe Lorand • Mathew Lewis • Mathias Lipowski • Mathieu DARTIGUES • Mathieu Hays •
Mathieu Montebianco • Mathieu Vanneste • Matt Farrow • Matt Field • Matt Gibson • Matt L Webb • Matt Lawless • Matt Lowe • Matt McGowan • Matt Schlote • Matt Sheehe • Matt Terry • Matt White • Matteo
Beretta • Matteo de Franceschi • Matthew Anderson • Matthew Cadiz • Matthew Clauer • Matthew Cleghorn • Matthew Cormier • Matthew Davison • Matthew Hacker • Matthew Hager • Matthew Hugh Cam-
eron Miller • Matthew Kairys • Matthew Ngo • Matthew Olding • Matthew Olney • Matthew Ray Williams • Matthew Royston Kingham • Matthew Savage • Matthew Smithers • Matthew Tully • Matthew Wagner •

Matthias Dierker • Matthias J. Fischer • Matthias Marm • Matthias Meier • Matthias Sturm • Matti Ranta • Mattia Forza • Mattia Viviani • Maude Lavoie • Mauricio Perez-Perez • Max Fancourt • Max Glenister • Max
Vermeulen Windsant • Max Yu Sun • Maxim Mestovsky • Maxime Lavoie • Maxime Richard • Maximilian Hoffmann • Maximilian Schalch • Maya Lavidavi • Mazlan • MC Casal • Mee Cha • Meg Urie Raymore •
Megan Yoerger • Melchior Mazzone • Melissa Palus • Meryl Menezes • Mette Sofie Park • Micael Noodep V. • Micah D Montoya • Michael A. Richards • Michael Anthony Sosa • Michael Borum • Michael Brydebøl
• Michael Byers • Michael Christensen • Michael Craig Barlow • Michael Dobekidis • Michael Dylan Chapman • Michael Erbertseder • Michael Fernandez • Michael Fulk • Michael Geißler • Michael Green • Michael
Hearn • Michael Heller • Michael Horkavy • Michael Lajlev • Michael McConnell • Michael Østergaard • Michael R Anderson • Michael Raffaele • Michael Raymond Velasco • Michael Read • Michael Regalado •
Michael Richard Murphy • Michael Rommel • Michael S. Anderson • Michael Scheffel • Michael Shmilov • Michaël Staudenmann • Michael Steller • Michael Travers Lee • Michaël van Oosten • Michael van Schaik
• Michael Wagner • Michael Whyte • Michael Wieland • Michael Willis • Michal Ferák • Michał Karoński • Michal Kechner • Michał Maszkiewicz • Michal Šišovský • Michel Neven • Michel Smekens • Michel van
Duijse • Michelle Blais • Michelle Carlough • Michelle O’Reilly • michielverhaege • Miguel ‘Empi’ Debruyne • Miguel Bermejo • Miguel Bruzual • Miguel Coronado • Miguel Coxo • Miguel dos Santos Vaz Dias
Wicht • Miguel Teixeira • Miguel Vaca • Mihai Daniel Patrascu • Mihai Nasaudean • Mikael Jorhult • Mikael Nyström • Mike Barnett • Mike Dingjan • Mike Gibson • Mike Houben • Mike King • Mike McMahon • Mike
Patteson • Mike Roddick • Mike Street • Mike Threlfall • Mike Van Hemelrijck • Mikey B • Mikhail Bryukhovets • Miki English • Mikki Kuukkanen • Mikko Lauhakari • Mikko Ristimäki • Milan Jedlička • Milan Kačurák
• Milan Sedliak • Miles Cheverton • Milesh Kumar • Milinda Verage • Milla Kansanen • Min Thu • Mindaugas Janiska • Ming Denpruektham • Mircea Georgescu • Mirco Moretti • Mirek Jahoda • Miroslav Rachev
• Mish Fabok • Mitja Ribic • Mitre Markovski • Moche Azoulay • mohammad nadim attari • Mohiuddin Parekh • Morgan Thomas • Morgan W. Estes • Moritz Helten • Morten Dam-Andersen • Morten F. Hansen •
Morten Gjesing • Morten Hjort • Morten Ljosdal Pedersen • Mustafa Doğacan Ünal • Nagavardhan Raju • Naqi Mehdi • Narayanan Hariharan • Narinder Chandi • Natalie Farand • Nate Edwards • natevandermay
• Nathan Dobbelaere • Nathan Levin-Greenhaw • nathan powell • Nathan Stokes • Nathan Toups • Nathan Tucei • Nathan Victor • Nathan White • Nathaniel Thompson • NavinS Navin Nava • Nehuen Mingote
Kisler • Neil Dawson • Neil Martin • Neil Martin • Neil Pawling • Neil Sotirakopoulos • Nelson D’Amour • Nelson Mendes • Nguyen Ho (butu) • Nguyen Kien Quoc • Nguyen Tan Trung • Nic Nagtzaam • Nicholas
John Morton • Nicholas Quinn • Nicholas Ver Duin • Nick Harrington • Nick Hurley • Nick Kamer • Nick Kind • Nick Reichert • Nick Van Ranst • Nicklas Jonsson • Nicola Pressi • Nicola Rubeo • Nicolas Chénard-
Morin • Nicolas Fouché • Nicolas Marcaud • Nicolas Morin • Nicolás Ozimica • Nicolas QUINTARD • Nicolas Taylor • Nicolas Widart • Nicolas-Pierre Dagoubert • Nicole Krienke • Nicole Lambon • Nicole Ortega
• Nicole Pribicevic • Nicole Sia Lopez • Niels Hendriks • Nikanos Polykarpou • Nikhil Vijayan • Nikita Seleckis • Nikita Tarasov • Nikki Kopelson • Niklas Laxström • Niklas Postulart • Niklas Sjostrom • Niklaus
Gerber • Niko Martin • Nikolas Giannikopoulos • Nikolaus Niedermeier • Nikos Zinas • Nils Pooker • Nils Wittler • Njabulo Mwandla • Noah Nojo Johnson • Noe Nieves • Noel Delgado • Noel Diaz • nooreddin
hosany • Nora Leverson • Norman Jusuf Hendriks • Norman Steger • Norman W. Franke, III • Nugen • Nuno Alexandre Peralta • Nuno Miguel Martins Barros • Okan Esen • Oktay Caglar • Oleg Bystrov • Oleg
Golubev • Olegs Belousovs • Oleh Burlaka • Oliver Beckenhaub • oliver blaum • Oliver Goebel • Oliver Hutz • Oliver Niedergesäß • Olivier Bertil • Olivier CUENOT • Olivier Parent • Olly Headey • Omri Younger
• Ondrej Lechan • Ong Sim Yen • Or Sabag • Örn Óskar Guðjónsson • Oscar Bazaldúa • Oscar Palmér • Oskar Borg • Oskar Sevel Konstantyner • Otto Coster • Oz Pinhas • P. Pikat • Pablo Olmos de Aguilera
Corradini • Pablo Rico Schmidt • Pablo Rojas • Paco Vida • Paddy Horgan • Palko Botond • Pamela Schreckengost • Panayiotis Velisarakos • Paolo B. • Paolo Lottero • ParisBouge.com • Pascal Konings • Pascal
Kuster • Pascal Orczech • Pascal Qyy • Pat Harbord • Patricia Decker • Patricia Molina • Patrick Bazinet • Patrick Brunner • Patrick Cohen • Patrick Cyr • Patrick Gerard van Diest • Patrick Hawley • Patrick Hilker
• Patrick Kavanagh • Patrick Kivits • Patrick Rügheimer • Patrick Rütter • Patrick Sanden • Patrick Stadler • Patrick Thompson • Patrick van Marsbergen • Patrick Wagesreiter • Patrick Zuidema • Patryk Jimi Nowak
• Pattanasak K. • Patti Glenn • Patti Hermoso • Paul Jones • Paul Arnst • Paul Burger • Paul Ciorogar • Paul Corbett • Paul Craiger • Paul Dumah Morgan • Paul Fry • Paul Howard • Paul Macey • Paul Nevin • Paul
Rezar • Paul Ross • Paul Ryan • Paul Slugocki • Paul Sprangers • Paul Stoffer • Paul Strzelecki • Paul Tanswell • Paul Thaden • Paul van de Runstraat • Paul van der Heyde • Paul Weichhart • Paul Wright • Paula
Cruz • Paulina Valdés • Pauline van der Sluijs • Pavel Usachev • Pawel Kus • Pedro Menezes • Pedro Nuno Pinho • Pei-Wei Wu • Penny Elbery • Per Fossum • Pere Pages Soms • Perry J Hoffman • Pervez Choud-
hury • Pete Roessler • Péter Attila Horváth • Peter Berberich • Peter Bloeme • Peter Dedene • Peter H.D. Wood • Peter Kracik • Peter L Tracy • Peter Laughton • Peter Madsen • Peter McClory • Peter Müller •
Peter Murray • Peter Steven • Peter Thieu • Peter van Lieshout • Peter Vesterkaer • Peter Warholm • Peter Webb • Peter Werkman • Peter White • Peter Wilkinson • Petteri Parhi • Phil Birnie • Phil Gibbins • Phil
Matthews • Phil Welch • Philip Floetotto • Philip Maloney • Philip Riley • Philip Serefoglou • Philip Tyrer • Philipp Hellwig • Philippe Wyssen • Phill Dodd • Phill Smith • Phillip Gourley • Phillip Michael Edward
Ostler • Philon Terving • Phong Nguyen • Phuong Huynh • Pierre Céroni • Pierre-Christian Mener • Pierre-Luc Chabot • Pieter De Clercq • Pilar Alfaro • Pim Arts • Piotr Polański • Pol Goasdoué • Polly Ivanova •
Pomagalnik • Popescu Ion-Bogdan • Postelnicu Lucian • Povilas Mecys • Prashant Sani • Prelević Miloš • Priscelia Chin • Proko Mountrichas • Pugia • Pugliese Pierfrancesco Maria • Quentin Cole • R Gary Rasmus-
sen • Rabbitinblack • Rachel Mc Nally Insignia Worldwide • Rachel McCollin • Rachel Willmer • Radek Castka • Radilson Carlos de Carvalho Gomes • Radu Cristian Vucea • Radu Pecheanu • Raf Van Suetendael
• Rafael Etessami • Rafał Drewnowski • Rai Uriarte Khalsa • Rainer Furtmeier • Rajan Venkataguru • Ralf Langebrake • Ralf Weber • Randall Wilson II • Randy Tibbott • Rapeepan Jroenkijkumjorn • Raphael
Dupertuis • Raphaël Nanni • Rasmus Badstue • Rasmus Malver • Rasmus Pettersson • Ratakorn Thantida • Raúl Cuevas Gorocica • Razvan Girmacea • Razvan Petre • RD Wilk • Rebecca H • Rebeka M • Reda
Banjar • Regan Johnson • Reinhard Glöckler • Rémi Gérard-Marchant • Remi Taieb • Remko Smid • Renata Miles • Renaud Lissowski • René Bach • Renier Navas • Reshma Patel • Reto Eller • Rezon Jovian •
Rhiza Tagala • Ricardo Augusto Martins Coelho • Ricardo Machado • Rich Bernstein • Rich Roth • Rich Sturim • Rich Tena J. • Richard Boyce • Richard Choi • Richard Hellier • Richard Persson • Richard Tidman •
Richard Tidmarsh • Rihnna Fe Macasaet Jakosalem • Rik de Jong • Ring Fai Cheung • Rita P. Best • Rob Bradley • Rob Jones • Rob Le Boutillier • Rob M Santos • Rob Sandusky • Rob Simpson • Rob Turlinckx •
Rob van der Donk • Rob Yuretich • Robert B. Spatz • Robert Baminger • Robert Brown • Robert Buchholz • Robert E. Lucore • Robert Fleischmann • Robert Hellebrand • Robert Hoppe • Robert Katzki • Robert L.
(Les) Baker • Robert L. Wall • Robert Labbe • Robert Lischke • Robert Novo • Robert Palme • Robert Sedovšek • Robert Spacek • Robert William Morris • roberto albini • Roberto Cadenas Valverde • Roberto
Cricrì • Roberto De Vivo • Roberto Marzocchetti • Robin Gauthier • Robin Jonsson • Robin Layfield • Robin Ting • Robin van Dongen • Rocky Roy • Roddy Boyd • Rodrigo Parra • Roger Lightfoot • Roger Poole •
Roger Vang • Rogier Barendregt • Roland Gaida • Roland Prinz • Roland Tefner • Rollo Hardy • Romain Dorget • Romz • Rong Shen • Rory Rosencrans • Rosanne Bersten • Ross Gledhill • Rowdy Rabouw • Roy
Barber • Roy Ho • Rudy H.M. Duke • Rüegg Tuck • Ruiz Remy • Rupert Bowater • Rupert de la Concepcion • Ruslan Zavackiy • Russ Baldwin • Russ Teaylor • Russell Zager • Ruud Kimmelaar • Ryan Barresi • Ryan
Boles • Ryan Bourne • Ryan Clark • Ryan Lombardo • Ryan O. Hicks • Ryan Pergola • Ryan Thomas • Sachendra S Yadav • Saeed M. Al Ghannami • Sagi Shrieber • Sal Baldovinos • Salvador Lugo • Sam Bennett
• Sam Miller • Sam Morrison • Sam Scholfield • Sami Blick • Sami Hakkarainen • Sammantha Lindgren • Sampsa Kuronen • Samuel Colledge • Samuel Gyger • Samuel Moore • Samuli Saarinen • Sandeep Mal-
ireddy • Sander Boersma • Sander Jansma • Sander Muru • Sander Wehkamp • Sandra Jackiewicz • Sandra Nieves • Sanjay Ginde • Santi Quiss • Sarah Bailey • Sarah Cox • Sarah Larson • Sarah Lynne Morrow
• Sarah Merlin • Sari Rothstein • Sascha Bonnemann • Sascha Kon • Sascha Mersch • Sascha Michael Trinkaus • Sascha Moeser • Sascha Üreten • Sashman • Sathaporn Thanwiwat • Satish Gandham • Saulius
Vikerta • Sávio Mendes • Schurti • Scott Eklund • Scott Gelvin • Scott Hopper • Scott J. Walter • Scott McEwen • Scott Nonnenberg • Scott-Hendryk Dillan • Scotty ‘KingScooty’ Vernon • Seamus P. H. Leahy •
Sean Johnson • Sean Kinread • Sean Turtle • Sebastian Butt • Sebastian Pieczynski • Sebastian Schack • Sebastian Thüer • Sebastien Fraser • Sebastien St-Pierre • Sebastijan Kolenko • Seçkin adoxus Kılıç •
See Guo Lin • Seh Hui Felix Leong • Senswerk Kft. • Sergei Golubev • Sergei Sidorov • Sergey Almone • Sergey Khabaroff • Sergi Soggies • Sergii Gulenok • Sergii Kushchenko • Sergio Luiz Gomes • Sergio
Mejia Arenas • Sergio Vieira • Seth Rubenstein • Shaan Nicol • Shaina Donovan • Shammel Lee • Shane Stevens • Sharon Harrup • Sharon Murphy • Shaun Prinsloo • Shawn Beharry • Shawn Burge • Shawn
Stringfield • Shawn W Elliott • Sherrie E Jones • Sherry Ann Bloomquist • Sho Tabata • Shuai Lee • Sibren Missiaen • Sie-Hang Cheung • Siegmund Führinger • Sieng Lee • Sigmund Baroe • Silvana Mariani •
Silvia Ferretti • Silviu Claponea • Silviu Scutariu • Simón Bautista Johansson • Simon Droste • Simon Gidney • Simon Hodgkiss • Simon James Cook • Simon Leadbetter • Simon So • Simon Taisne • Simona-Is-
abela Goldan • Sindy Ackerman-Stratton • Slim Bouafif • Sonja Leix • Sophia Jeanne • Sophia Lee • Sorawit Wanitwarodom • Søren Götte • Sparky Köninger • Staelen Yew • Stanislav Kulik • Stanley Lai • Stas
Kulesh • stefan biba • Stefan Hamann • Stefan Janik • Stefan Kuiper • Stefan Mayer • Stefan Meisinger • Stefan Moldoveanu • Stefan Nilsson • Stefan Pasch • Stefan Petrović • Stefan Reichert • Stefan Roehle •
Stefan Walter • Stefan Wolfrum • Stefano Boccuti • Stefano Carotenuto • Stefano Fois • Stefano Giordano • Stein Hoftvedt • Stella Pelagatti • Stephan Albinus • Stéphane Dubois • Stephane Duplessis • Stéphane
Hanquet • Stéphanie Nicole • Stephanie Weaver • Stephanie Wiermann • Stephen Gilbert • Stephen McDonald • Stephen Mead • Stephen Piana • Steve Dangerfield • Steve Gibson • Steve Gilbertson • Steve
Godbold • Steve Goris • Steve Jordan • Steve McKinney • Steve Slade • Steve VanSickle • Steve Williamson • Steven Aerts • Steven Celen • Steven Fleet • Steven Miles • Steven Quinn • Steven Thys • Stewart
Milne • Stian Andresen • Strácz András • Street Solutions Inc. • Stuart Lawder • Stuart Mycock • Stuart Taylor • Suitmedia Designers • Sumartono Liu • Sunpeng • Supakorn Ted Komthong • Super Mario Andrade
• Suresh Kumar Veeramachaneni • Susan Chopra • Sven Herrmann • Sven Wokurka • Swetlana Senkevitch • Sydnie - Jade Poole • Szabolcs Légrádi • Tamara Zuk • Tamas Szurmik • Tammy Collins • Tanna
Winter • Tara J Kohinska • Taron Foxworth • Tass Iliopoulos • Tate Dance • Tatu Lappeteläinen • Taylor Dolezal • Ted Specht • Teemu Pärssinen • Teon Ooi • Terry Bennett • Thanasis Politis • Thaninrat Thana-
tharavat • The Almighty Vasco Borges • Theo Ntogiakos • Thiago Henrique Santos • Thibault Fagu • Thiebault Keffer • Thijs ter Haar • Thomas Aten • Thomas Bauer • Thomas Benlevi • Thomas Bilocq • Thomas
Bishop • Thomas Callaghan • Thomas de Wit • Thomas Delissen • Thomas F. Burdick • Thomas Harrer • Thomas Kahn • Thomas Kalve • Thomas Kitto • Thomas Krimmer • Thomas Künneth • Thomas Laurent •
Thomas Lohbeck • Thomas Nägele • Thomas Rae Southall • Thomas Sander • Thomas Sanders • Thomas Sileo • Thomas Stache • Thomas Strobl • Thorsten Faltings • Thryn Albin • Tia L. Bradford • Tiago Fer-
nandes • Tiago Morgado • Tiemen Vergeylen • Tihai Victor • Tihomir Budic • Tilano de la Roser • Tim Brunsmo • Tim Burrell • Tim Duffey • Tim Fox • Tim Geibel • Tim Gleeson • Tim Griffiths • Tim Karelse • Tim
Neil • Tim Oliver Schweizer • Tim Rogiers • Tim Rosenthal • Tim Ruszel • Tim van Cleef • Tim Wayne • Timo Pietilä • Timo Rinta-aho • Timothy Quinlan • Tobias Horvath • Tobias Lundin • Tobias Treppmann • to-
bias wehner • Todd & Aimee Richards • Tohbbe Lindblom • Toja Tomasz Janeczko • Tom Arnold • Tom Bangham • Tom Bannister • Tom Carter • Tom Erik Nielsen • Tom Faber • Tom Fischer • Tom Janssens • Tom
Kindred • Tom Nijns • Tom Potkins • Tom Riordan • Tom Steiner • Tom Van Camp • Tom-Erik Thorbeck • Tomás González León • Tomáš Jeřábek • Tomáš Kuba • Tomáš Lištiak • Tomas Miskerik • Tomasz Tomick
Janusz • Tomasz Kowalczyk • Tomasz Tomczyk • Tomaž Bešter • Tomaz Mrevlje • Tomislav Damjanović • Tomislav Mesić • Tommaso Baldovino • Tony Bishop • Tony Crockford • Tony Koch • Tony Kornmeier •
Tony Naccarato • Tony Pujals • Toomas Arula • Toon De Baere • Torben Bohr • Torsten Stern • Tracy Baker • Tracy Young • Travis Baird • Travis Ricks • Travis Simpson • Trea Ouwehand • Trevor Alexander •
Trevor Sather • Tristan Legros • Troels Lauritz Reese Christensen • Tuomas Lecklin • Tyago Neres • Tyler Lesperance • Tyler Lindo • Tyler Sparks • Ula Suwada • Ulf Sandfrost • Unai Aizpurua Marcos • Vadim
Saveljev • Valentin Harbic • Valentin Wadl • Valerie Taylor Wilson • Valeriu Tihai • Vanja Frivarski • Varunkumar Natarajan (Varoon) • Vasileios Mitsaras • Vasjen Katro • Vassilis Galopoulos • Vatsal Mehta •
Vaughan Cornell • Veli-Matti Viippola • Veli-Pekka Peltola • Vera Nesvadbova • Vernon E. Neilly, II • Veronica Pena-Carrasco • Vicent Garcia Tormo • Vicker Leung • Vicky Twomey-Lee • Vico van den Eventuin
• Victor Malumian • Víctor Núñez • Victor Tisnado • Victoria Holland • Vidya Tolani • Viet-Anh D. Nguyen • Viking Karwur • Viktor Fejes • Viktor Kalinin • Ville Pietarinen • Vincent Hide • Vincent van Scherpenseel
• vincent woo • Vincent Zegna • Vincenzo Menni • Vinicius Colacino da Rocha • Vipindas • Virath Phongsavan • Viren Jhonsa • Viren Ratan • Vitor Reis • Vivian Lopez • Vlad Carp • Vlad Ciureanu • Vokseverk •
W. Todd MacCulloch • Wade Fuller III • Wallace Sidhrée • Walt Nelson • Walter Swaenepoel • Wang Zijia • Warit Arayasomboon • Warren Groom • Wayne Parkes • Webbasica • Wed van Exijf • Werner Burckard
• Werner Frylinck • Werner Stotter • Wesley J Gale • Wesley, Jonathan, Mike, Matt, Amber • Whitneye Kidd • Wil Pannell • Wilco Huisman • Wilfred Reyes • Will Gulcher • Will Phillips Jr • Will Smith • Willem Bot-
tema • Willem Roman Rabsztyn • Willem van Duijn • William ‘Bill’ Madden • William Kunz • William Ukoh • Wills Bithrey • Willy Sudiarto Raharjo • Wilson Gheur • Wim Demortier • Winston Krauss • Wish Ronquillo
• Wolfgang Rainer Kocmann • Woon Loong de SkyHomer • Wouter Admiraal • Wouter Daan • Wouter Mellaart • Wouter Tinbergen • Xandro Castañeda • Xavier Cambar • ximena iregui • Yamini Kagal • Yarden
Sachs • Yee Lok Kwok • Yevgen Vershynin • Yih Liang • Yingying Zhang • Yje-Roel Teertstra • YM Han-Grassman • Yogev Ahuvia • Yolanda Gené Proctor • Yorgo Kousagiannidis • Yow-Long Lee • Yuri Klebanov
• Yves Lüthi • Yvonne Irene Mendel • Zaahir Jappie • Zach Ary • Zdravko Šašek • Zecaraz • Zeyar Wai Phyo • Zia Zek • ZiadNaseriddin • Ziv Cohen • Zoltan Hosszu • Zsolt Revay-Giran • Zvi Goldfarb

FOR BEING SMASHING! THIS BOOK IS DEDICATED TO ALL MEMBERS OF THE SMASHING MAGAZINE COMMUNITY.
HERE ARE ONLY 2,630 OF THEM. WE TRULY APPRECIATE ALL YOUR SUPPORT.

Published 2012 by Smashing Media GmbH, Freiburg, Germany.
Printed by DE Druck Europa GmbH.

Cover Design: Veerle Pieters. Illustrations: Kate McLelland.
Proofreading: Andrew Lobo, Iris Lješnjanin. Author Bios: Talita Telma Stöckle.
Editing and Quality Control: Vitaly Friedman, Iris Lješnjanin.
eBook Production: Thomas Burkert, Talita Telma Stöckle, Andrew Rogerson.
Marketing: Stephan Poppe. Technical Support: Robin Schulz.
Design and Layout: Ricardo Gimenes, Markus Seyfferth.
Typefaces used: Skolar by David Březina, Proxima Nova by Mark Simonson, Andale Mono by Steve Matteson.

The Smashing Book #3 was written by Elliot Jay Stocks, Paul Boag, Rachel Andrew, Ben Schwarz, Lea Verou,
David Storey, Christian Heilmann, Dmitry Fadeyev, Marc Edwards, Aarron Walter, Aral Balkan, Stephen Hay
and Andy Clarke.

The chapters were reviewed and edited by Collis Ta’eed, Ryan Carson, Harley Finkelstein, Daniel Weinand,
Russ Weakley, Tab Atkins, Paul Irish, Joshua Porter, Jon Hicks, Denise Jacobs, Josh Clark, Anders M. Andersen,
Bryan Rieger and Owen Gregory.

Idea and Concept: Vitaly Friedman, Sven Lennartz.

All links featured in this book can be found at www.smashing-links.com.

Imprint

PrefaceTable of Contents

7 	 Preface
	 by Elliot Jay Stocks

9 	 The Business Side of Redesign
	 by Paul Boag

37 	 Selecting a Platform: Technical Considerations for Your Redesign
	 by Rachel Andrew

71 	 Jumping Into HTML5
	 by Ben Schwarz
	
93	 Restyle, Recode, Reimagine With CSS3
	 by David Storey and Lea Verou

135	 JavaScript Rediscovered: Tricks to Replace Complex jQuery	
	 by Christian Heilmann

163	 Techniques for Building Better User Experiences
	 by Dmitry Fadeyev

197	 Designing for the Future, Using Photoshop
	 by Marc Edwards

231	 Redesigning With Personality
	 by Aarron Walter

255	 Mobile Considerations in User Experience Design: Web or Native?
	 by Aral Balkan

285 	 Workflow Redesigned: A Future-Friendly Approach
	 by Stephen Hay

311	 Becoming Fabulously Flexible: Designing Atoms and Elements
	 by Andy Clarke

335	 Index

Table of Contents

Preface

by Elliot Jay Stocks

PrefacePreface

Preface

8

hen you work in an industry that evolves at an incredibly rapid pace,
every moment on that continuous journey of evolution is an exciting time.
To say that, “Now is an exciting time to be working in Web design and

development,” is something of a misnomer. It always has been and always will be an
exciting time to live on the bleeding edge of the Web.

And yet, in recent months, I still find myself uttering those words, because now is
an exciting time. In the early days of table-based layouts and novelty “new media,” we
were nervous children, looking to our parents from the world of analogue media for
support; in the early years of this century, we became awkward teenagers, experiment-
ing with a variety of tools and techniques, both for better (Web standards) and for worse
(proprietary plugins). Now, we’ve matured into relatively confident twenty-somethings,
channeling all that we’ve learned into new, exciting experiences that finally—at long
last—embrace the transient, malleable, open, and fluid nature of the Web.

It is not enough to have refined tools, nor is it enough to have the technical and
creative knowledge to use them. True maturity comes from a marriage of both: a
deeper understanding of what can be achieved—but more importantly—what should
be achieved. Multiple browser support for experimental CSS features is not revolution-
ary; using them gracefully is. Having the choice of thousands of typefaces to use is
not revolutionary; using them gracefully is. Inserting media queries to change styles
according to browser width is not revolutionary; using them gracefully is.

This concept of our maturing industry—moreover, our own awareness of it—has
manifested itself on the stages of conferences around the world, in the pages of our
printed magazines, journals, and books, and, of course, throughout the Web’s network
of blogs. It was this sense of the Web having grown up that spurred my recent redesign
of Smashing Magazine’s website, and the theme of redesign is one you’ll find through-
out this book. It takes the form of the business considerations that go into a redesign, as
outlined by Paul Boag, as well as the modernizing of a website with tools like HTML5,
CSS3 and JavaScript, as discussed by Ben Schwarz, Lea Verou, David Storey and Chris-
tian Heilmann; it’s in the responsive, mobile-friendly techniques demonstrated by
Stephen Hay and Andy Clarke; and it certainly manifests itself in the broader consid-
erations covered in the chapters by Rachel Andrew, Dmitry Fadeyev, Marc Edwards,
Aral Balkan and Aaron Walter.

The desire to push things forward that drove the redesign of Smashing Magazine
also inspired the creation (and content) of the third Smashing Book. It is this passion
that binds us as a collaborative rather than competitive community—a passion I’m sure
you’ll feel as you leaf through these pages—inspiring each and every one of us to make
the Web a better place... one CSS gradient, one Web font, and one media query at a time.

W

The Business Side
of Redesign
Written by Paul Boag
Reviewed by Collis Ta’eed

The Business Side of Redesign CHAPTER 01

CHAPTER 01 The Business Side of Redesign

10

edesigning a website is the most fun Web designers can have with their
clothes on. Nothing is more exciting than a blank Photoshop document, a
library of CSS3 snippets and a world of possibilities. Unfortunately, I am here

to burst your bubble.
Other chapters will cover cool design techniques, cooler coding possibilities and as

many beautiful design examples as a Web designer can look at without going blind. I,
on the other hand, will talk about the business behind redesigns.

What could my reason possibly be for focusing on such an uninspiring subject? Sim-
ple. The business behind a design has the potential not only to make a website success-
ful, but alternately to ruin a perfectly good project. Like all of you, I have been involved
in too many projects in which my excitement was dashed by changing requirements,
ill-defined briefs and clients who appeared to be uncooperative. Fortunately, years of
experience have taught me that if you are sufficiently prepared, these dangers can be
significantly reduced.

This chapter aims to give you the techniques and knowledge needed to ensure that
your next redesign project doesn’t turn into a nightmare. We’re going to look at sub-
jects such as:

•	The dangers of redesigning,

•	Researching your project thoroughly,

•	Working with the client,

•	Testing your design,

•	Future-proofing the website.

Before you get too excited by this list, let’s begin by asking, when is it time to redesign?

Is Now the Time to Redesign?
When a client or boss asks us for a redesign, we want to leap into action. After all, this
is what we love doing. Unfortunately, a redesign is not always the best move, and it falls
to us, the Web experts, to explain why.

Since its birth, the Web has had a culture of periodic redesign. Every few years,
somebody in senior management is horrified by the state of their website and demands
a redesign. The old website is thrown out and a shiny new one is put in its place.

R

The Business Side of Redesign CHAPTER 01

11

For a brief moment, this new website lights up the World Wide Web. However, the
content does not get updated, technology moves on and tastes change. The shiny new
website gradually tarnishes, until the organization is ashamed of it.

After a couple of years of stagnation, somebody in senior management once again
recognizes the need to do something, and the process begins all over again.

WHY COMPLETE REDESIGNS ARE WASTEFUL

The next time a client asks for a redesign, be sure to discuss why this request might be
a mistake. The reasons might include the following:

•	When the website is redesigned, the entire thing has to be replaced, including 	
	 elements that still work well. Everything is rebuilt from scratch.

•	The website spends most of its life being ineffective because content gets out of 	
	 date and design inconsistencies creep in. Although it may shine once every few 	
	 years, the rest of the time it is seen as an embarrassment and, so, is underused.

•	Users rarely respond well to major changes. You need only look at the outcry 	
	 every time Facebook does a redesign to see this problem.1

•	Redesigning periodically is bad for cash flow, because it requires substantial 	
	 investment every few years.

•	Testing the effectiveness of a complete redesign is hard because so much has
	 changed.

•	Long periods with no change give users little reason to return to your website.

In many cases, I recommend to my clients that they realign instead.

GOOD DESIGNERS REDESIGN, GREAT DESIGNERS REALIGN

It was in 2005 when Cameron Moll first popularized the idea of realigning websites,
rather than doing wholesale redesigns.2 The concept has grown considerably since
then but can still be simply defined: realignment of a website consists of a series of
incremental changes over time to meet particular business objectives.

1 The Washington Post, “Facebook Changes Confuse Users, as a Major Overhaul Looms,” smashed.by/fbc
2 Moll, Cameron. “Good Designers Redesign, Great Designers Realign,” smashed.by/realign

CHAPTER 01 The Business Side of Redesign

12

In other words, proponents of realignment reject the notion that a website needs a
massive overhaul every few years in order to remain up to date. Instead, they propose
an ongoing program of incremental development that maximizes the effectiveness of
the website to meet business objectives. This avoids the pitfalls of redesign and expen-
sive rebuilds every few years.

This thinking moves away from the idea
that a website is ever really complete or can be
“signed off.” It recognizes that design needs to
evolve based on continual testing. As more is
learned about user behavior and preference,
the design should incorporate this new knowl-
edge so that the website can become even more
effective. That being said, realignment doesn’t
fit every project.

WHEN REDESIGN IS PREFERABLE TO REALIGNMENT

Despite the fact that I am a fan of incrementally improving websites (i.e. realignment),
the majority of the work that I do at my Web design agency, Headscape, still consists of
complete redesigns. We try wherever possible to use a website’s current look and feel as
a starting point, but the build itself often has to be done from scratch. This is because
few existing websites are built with long-term development in mind. Little thought is
given to future-proofing, as we will discuss later in this chapter.

Also, realignment itself can be a reason to do a major redesign. Even a website that
has been part of an ongoing program of realignment occasionally needs a complete re-
design. This is for two reasons. First, many websites that are being constantly changed
will develop inconsistencies that undermine the user interface. In an article encourag-
ing incremental change,3 Jakob Nielsen writes:

In other words, every website eventually needs to be redesigned.

3 Nielsen, Jacob. “Fresh vs. Familiar: How Aggressively to Redesign,” smashed.by/nielsen	

“Realigning a website is

a series of incremental

changes over time to

meet specific business

objectives.”
— Cameron Moll

“In the long run, however, incremental-

ism eventually destroys cohesiveness,

calling for a new UI architecture.”

The Business Side of Redesign CHAPTER 01

13

The second problem with incremental change is its impact on the underlying code. We
have worked with one of our clients for well over six years in our agency. This period
has been spent in a constant process of refinement and incremental change. New
features have been added, while others have been dropped. Design styles have been
tweaked based on user feedback. All of these changes eventually resulted in a coding
nightmare. A part of the website was built on classic ASP, other parts on .NET. The CSS
files became bloated with code that was no longer needed. We planned and documented
as best as we could, but eventually the entire underlying code base had to be rewritten.

Unsurprisingly, the client was reluctant to pay a considerable amount of money
without seeing any visual difference. So, we tied this work in with a redesign of the
website, thereby killing two birds with one stone.

Although a process of incremental change is preferable, doing the occasional
redesign is still perfectly fine. The key is to recognize the signals when a redesign is
required.

REDESIGN INDICATORS

We have already identified two indicators that point to a need for a redesign rather
than a realignment: when inconsistencies in the user interface creep in, and when the
code becomes unmanageable.

A related coding issue is performance. If the website suffers from serious perfor-
mance issues, and incremental changes have not been enough to fix them, then a rede-
sign might be the answer. Building an entire website from scratch gives you the chance
to optimize for performance by removing legacy code.

A redesign might also be necessary simply because the existing design has reached
its limit. Although incremental change is usually possible, some aspects are extremely
hard to change without profoundly affecting the rest of the design.

For example, changing the underlying grid structure of a website will affect every-
thing from navigation to type size. Therefore, if the grid needs to be radically changed
because of new incompatible content or changes in screen resolutions, then, again, a
significant redesign might be necessary.

There could also be business reasons to consider a redesign rather than realign-
ment. A major redesign brings with it promotional opportunities that you don’t get
with incremental changes. Also, a redesign provides the kind of radical shake-up that
is sometimes necessary to give an old website new life.

CHAPTER 01 The Business Side of Redesign

14

Finally, another common reason I push for a redesign is if an organization has under-
gone major rebranding or repositioning. This wouldn’t be just minor tweaks to the
logo. Rather, if the company were to significantly change its market position, then that
would affect everything from target audience to content and visual appearance.

Simply slapping a new logo on the website, as I have often seen done, would not be
enough. Brand is more than just a logo. Whether you choose to redesign or realign, it
needs to be done for the right reasons.

REASONS FOR CHANGE

As Cameron Moll points out in his article, redesigning merely because the current
website looks “old” is not enough. Change needs to be driven by business objectives.
Typical reasons for change are:

•	Shift in market trends,

•	Change in business model,

•	Drop in conversion rate,

•	 Increase in customer support requests relating to the website,

•	Repositioning of brand.

Note that not only are these drivers related to business (rather than purely aesthetics),
but their results benefit from immediate action. In other words, if your conversion rate
is falling or your business offering has changed, then you don’t want to wait two years
for the next major redesign to address it.

This is why incremental change is often preferable. Things move fast, both online
and offline. If you want your website to run at peak efficiency, then you cannot wait to
make major changes to it.

Depending on the actual problem, changes to a website could be as minor as textual
adjustments or as major as a redesign of the entire user interface. Whatever the case,
when considering whether now is the time to change your website, those decisions
should be business-driven and done as part of an ongoing and incremental process of
development. Unfortunately, changing your website comes with certain dangers.

The Business Side of Redesign CHAPTER 01

15

Avoiding Project Pitfalls
When we start a new project, there are endless possibilities. We are excited, enthused
and full of vision. Why is it, then, that by the end we just want to launch it and never
mention it again?

Whether we’re undertaking a complete redesign or a modest realignment, there is
no shortage of pitfalls for the unwary designer. Worse still, we tend to repeat the same
mistakes. Before launching into your next project, make sure to take a few moments to
consider the most common issues that arise and how to deal with them.

Although every project is different, here are the biggest issues I have encountered
in my sixteen years as a Web designer:

•	Scope creep,

•	Falling victim to fashion and trends,

•	Building without considering the return on investment,

•	Negative feedback.

Let’s look at each in turn.

COMBATING SCOPE CREEP

Nothing sends a colder shiver down the spine of any Web designer than hearing a cli-
ent utter the phrase, “I have an idea!”

The scope of any project will almost inevitably creep wider. From the perspective of
clients, this is understandable. They are not Web experts like us and so do not think of
everything in advance. Only by working alongside us do they start to realize the pos-
sibilities. How, then, do you deal with the goal posts moving? One way is to simply dig
your heels in and say “No.” However, this could lead to confrontation and damage your
relationship with the client.

The methods we have found to succeed are to introduce a wish list of ideas and to
work in phases. When either the client or we have an idea, it is added to the wish list.
The ideas should not be censored or appraised, just added.

At the end of the project, the wish list is reviewed. The items on the list are vetted
for practicality, and those that remain are prioritized and organized into development
phases.

CHAPTER 01 The Business Side of Redesign

16

By making the client aware of this process up front, we set expectations about how
changes are handled. It also encourages the client to think in terms of an ongoing rela-
tionship, which is good for repeat business.

The client will inevitably insist that some of their ideas are within the project’s
scope. I recommend that you avoid arguing about this mid-project. Explain that imple-
menting the idea in this phase of development would harm the project. Suggest that the
issue be parked until after the launch and discussed then.

Parking contested issues until phase 2 has three advantages:

•	The client is less likely to force the issue once they see their wonderful new 	
	 website.

•	The new website won’t be held up by features, making it more likely to launch 	
	 on time.

•	With the new website live, you are in a stronger position to debate what exactly 	
	 was within scope.

Not that scope is the only thing that strikes terror in our hearts.

FALLING VICTIM TO FASHION AND TRENDS

Another utterance that makes Web designers blanch is something along the lines of,
“My son is obsessed with Facebook. We need Facebook on our website.” Of course, Face-
book is not the problem. The client could just as easily say, “Our competitor’s website is
cool. We need to look like that,” or “We need a Web 2.0. website.”

The point is that clients often jump on bandwagons (sometimes mid-project), and we
are expected to jump on right beside them. Not that we are any better. As Web design-
ers, we love the latest trend, whether it’s responsive design or gradients and drop-
shadows.

The problem with fashion is that it changes, as do the client’s requirements. What is
liked when the project commences could be hated by the time the client has to sign off
on the design. Even if the client remains consistent in their opinion, the website will
look out of date over time, making it more difficult to realign and perhaps leading the
client to view your work in a negative light.

The Business Side of Redesign CHAPTER 01

17

The most powerful defense against fashion is simple: we must ask why. Saying that
something is “cool” or “in” is not enough. We must ask why the idea is good and provide
tangible business reasons. We need to apply this reasoning to our own choices and
those of the client. When a client falls prey to fashion, avoid shooting them down in
flames. Instead, gently ask why they feel it is a good idea. Often, some gentle prodding
is enough to make them realize they are being seduced by the shiny and new.

When this does not do the trick, go further and ask them where they expect the
return on investment to come from.

BUILDING WITHOUT CONSIDERING RETURN ON INVESTMENT

Many of the calls for bids I have received over the years read more like a wish list than
a comprehensive brief. I see it as my job to refine each proposal into something that will
benefit the client’s business, rather than give them exactly what they have asked for.

Clients (like all of us) get seduced by features. They don’t consider the cost of imple-
mentation compared to the return, because they are not in the position to make that
assessment. It is up to you to help them with that process.

I remember in the early days of running our design agency, we built a website that
supported multiple languages. Because this was in the days before multi-lingual sup-
port was a standard feature, it proved to be expensive.

I didn’t question why the client wanted this feature or indeed how they were going to
get their content translated. In the end, the functionality was never used. I implemented
their wish list rather than met their business needs and so wasted a lot of their money.

The more features are added, the greater the cost and complexity. Your job is to help
the client keep things simple.

You might be noticing a recurring theme here: always favor simple solutions. Your
job as a Web designer is to curb your own excesses and those of the client. Instead of
a big redesign, opt for a subtler realignment. Instead of adding more features, outline
a simple feature set and stick to it. Instead of following the latest trends, focus on the
simple, timeless and classic.

This will ensure that the client gets the highest return on the money they spend
with you. It also minimizes the final pitfall of all redesign projects: negative feedback.

DEALING WITH NEGATIVE FEEDBACK

I have already mentioned that people rarely react well to change. Some of us simply
don’t like change, while others are disappointed because things haven’t changed in the

CHAPTER 01 The Business Side of Redesign

18

way they had hoped. In either case, any change to a website will elicit a reaction among
both users and stakeholders.

We have established that minimizing change will reduce the chance of criticism.
But this is not always possible, and even when it is you will still get negative feedback.
Initial responses, whether positive or negative, are not to be trusted.

I remember discussing the issue with Daniel Burka when he was the lead designer
at Digg. He told me how difficult he found it not to immediately respond to criticism
after going live with a new design element. His inclination was to fix the perceived
problem. But he learned that if you wait a couple of weeks, users would get used to a
change and often accept it. In the end, this became his standard approach. He wouldn’t
make any further changes until a design element had been live for at least two weeks.

When a client or user sees new work, they make a snap judgment that rarely re-
flects their eventual perception.

Someone could be blown away by the aesthetics of a new design and yet in time dis-
cover the website to be unusable. Likewise, someone might hate certain changes when
they first see them but then grow to love them.

I have learned three simple tactics to manage negative feedback effectively. The first
is to allow time in the project’s schedule between first showing the design to the client
and making changes to it. This gives the client an opportunity to get used to the design
before responding.

Secondly, actively encourage the client to take this time to digest the design. Ex-
plain to the client up front that an initial reaction is not always the best one and that
they should keep going back to the design over a period of time before responding.

Finally, warn the client in advance of what will happen once the new design goes
live. Explain that users might initially respond negatively. Criticism usually worries
clients. This can understandably lead to knee-jerk reactions that make things worse.

Clients might also feel the same pressure when showing your work internally. Their
immediate reaction might be to act on every negative comment, despite the stakehold-
ers having lacked time to absorb the design.

Preempt this problem by discussing it with the client beforehand. You can then re-
fer back to this moment when the problem actually occurs. This will reassure the client
that this is a common occurrence and one you are prepared for.

Preparation is the key to a successful redesign or realignment. It leads to a better
website for the client and a more rewarding project for you. But to prepare properly,
you have to do your homework.

The Business Side of Redesign CHAPTER 01

19

Do Your Research, Be Prepared
When deadlines and budgets are tight, there is an overwhelming temptation to jump
right into the design process. However, doing so is unwise. First, we need a clear un-
derstanding of what we are doing and why we are doing it. This entails some research.
Before explaining what I mean by research, I want to outline why it is important to the
process.

WHY DO YOUR HOMEWORK?

There are two reasons to do research before starting any project. First, it will help edu-
cate you about the project. Secondly (and arguably just as important), it gives you the
ammunition required to get approval for your work.

If we have a firm grasp of things such as business objectives, competition, statistics
and the weaknesses of the existing website, then justifying our design decisions in
terms that the client can relate to becomes much easier.

Justifying white space around a contact form as being aesthetically pleasing is not
something a client can identify with. But telling them that the white space will help
achieve their business objective of drawing more inquiries is something they can un-
derstand. What then is involved in research?

WHAT RESEARCH SHOULD I UNDERTAKE?

The amount of research you undertake should be proportional to the value of the
project. But no matter the size, you should undertake at least some research. I am often
surprised at the lack of basic information in the average request for proposal. Requests
often fail to address fundamental questions, such as:

•	Why do we have a website?

•	What do we want the website to achieve?

•	How will we measure its success?

•	What do we want users to do on our site?

As Web designers, we must extract this information from the client before beginning
work. Business objectives should be at the top of the list.

CHAPTER 01 The Business Side of Redesign

20

Getting the client to articulate their business objectives can be problematic. I have
often asked clients why they have a website and what they wish to achieve, only to
receive vague answers.

I no longer assume that this thinking has taken place. Instead, I sit down with the
client at the outset of a project and brainstorm on their business objectives. I then work
with the client to prioritize this list and turn it into measurable success criteria.

For example, a vague business objective such as “increase sales” needs to be turned
into something more specific and directly connected with a call to action. So “increase
sales” would become “increase the number of quality leads being submitted via the
website’s contact form.”

Prioritizing the business objectives is important because they will sometimes clash.
For example, one business objective might be to generate more sales leads, while a
higher priority might be to showcase a product. So, when someone suggests forcing
users to submit their email address before being able to view a product demo, you can
counter by saying that showcasing the product is more important.

Establishing specific, measurable business objectives should be the minimum
amount of research carried out in any project. But for most projects, we should dig a
little deeper still. One way is to carry out stakeholder interviews.

THE VALUE OF STAKEHOLDER INTERVIEWS

A stakeholder interview is a semi-structured discussion with those who benefit from a
website. It could be someone who works directly on the website (such as a content edi-
tor) or individuals who rely on the website to achieve their business objectives (such as
department heads).

Stakeholder interviews provide four benefits:

•	They bring the Web designer up to speed on business requirements.
When you’re faced with a complex business model in a new sector, stakeholder
interviews are a valuable way to understand the requirements of the client. By
speaking with stakeholders, you learn about the sector and the organization, while
identifying how the website can meet the client’s business needs.

The Business Side of Redesign CHAPTER 01

21

•	They provide a more comprehensive perspective.
Most Web projects in large organizations will affect numerous parts of the busi-
ness. To fully understand a project’s potential impact, you need to discuss the
project with all parties. Most projects are commissioned by a single department,
which will have a particular perspective on the objectives. By talking to other
stakeholders, you ensure that the project helps rather than hinders others within
the organization.

•	They are politically advantageous.
Unfortunately, internal politics is a reality in most large organizations. This means
that there is no shortage of people who want to be heard. Stakeholder interviews
provide an environment in which they can express their opinions. I have found that
if people in an organization feel that their opinions have been heard, they are much
more likely to support the design further down the line. Stakeholder interviews
also help to justify a design because you can refer back to their comments as justifi-
cation for certain design elements.

•	They provide access to the real decision-makers.
When working on a big project, you will often be dealing with a relatively junior
employee, with the real decision-makers staying behind the scenes, which can be
problematic. Stakeholder interviews allow you to talk to these people and under-
stand what they want to achieve.

Well-run stakeholder interviews ensure that the Web project gets clearly defined goals
that benefit everyone in the organization, while at the same time confirming buy-in
from all parties. Stakeholder interviews focus on the organization and the future of the
website. But a lot is to be learned by reviewing what’s already there.

RESEARCHING WHAT CURRENTLY EXISTS

We begin many projects by reviewing a client’s online presence. This review is often
commissioned as a separate project, before we even consider a website redesign. This
gives the client an opportunity to work with us on a small task before committing to
a large project, making it easy for the client to decide whether to work with us long
term without having to commit up front. Assuming that the client is open to a research
phase, we have five options (picking only one or two in most cases):

CHAPTER 01 The Business Side of Redesign

22

•	A strategic review
A strategic review looks at their current Web presence. It outlines strengths and
weaknesses, and goes on to make recommendations for improvement. This report is
an opportunity for the client to benefit from your experience, rather than just use
you as a pixel-pusher.

•	A heuristic review
Similar to a strategic review, a heuristic review analyzes the strengths and weak-
nesses of the existing website. The difference is that a heuristic review uses a set
number of criteria, rated between 1 and 3. A heuristic review provides an analysis
of the website but not much in the way of strategies for improvements.

•	A competitive analysis
A competitive analysis uses similar criteria as a heuristic review but applies them
to the competition. This provides valuable insight and helps the client learn from
their competitors’ mistakes and adopt their successes.

•	An analytics report
An analytics report identifies problems with the website and is a benchmark by
which to measure change. It can reveal much about user behavior. For example, you
can learn which parts of the website convert best. It also shows exit points, thereby
revealing problem pages.

•	Personas
Personas are a powerful tool for focusing on users. A set of personas tells us about
the website’s users and what they are trying to achieve. They provide more than
demographic information, by identifying use cases and user journeys through the
website.

Although time-consuming, this kind of research is valuable.

We’ve gone over the benefits of understanding and justifying design decisions, and
touched on how this helps the client get to know you better. The last point we’ll make is
important if you want a collaborative working relationship with your client.

The Business Side of Redesign CHAPTER 01

23

A Collaborative Approach to Redesign
Many of the relationships I see between designers and clients are broken. The designer
is subservient to the client and ends up working in isolation.

This traditional client-supplier relationship is harmful for a number of reasons:

•	The client does not benefit from the full experience of the designer.

•	The designer becomes frustrated because they are reduced to being a 		
	 pixelpusher.

•	The client feels excluded from the process.

•	There is a lack of communication between the two parties, which leads to 		
 misunderstanding. Because the designer works in isolation, the chance of 		
	 producing something that the client will reject increases.

•	The client is left to make important decisions—some they really aren’t 		
	 educated to make.

My approach is to work in a collaborative and equal relationship with clients, including
them in every part of the process as well as taking a much more active role in decision-
making myself.

Instead of working on the design in isolation, I work alongside the client, showing
them sketches, wireframes, mood boards and design comps. Once the final design is
submitted, the client is more likely to approve it for three reasons.

First, the design will not come as a surprise. The client will have seen the work that
went into it, and so the final piece will seem to be a natural extension of that. For this
approach to work, you need a design process that includes the client.

Secondly, the client will feel a sense of ownership over the design. They will have
provided feedback at every step of the process and so would consider the design to be as
much theirs as yours.

Finally, the client will be able to understand where the design came from because
they had a hand in the thinking that went into it. The bonus is that, because the client
understands and feels connected to the design, they will do a better job of convincing
others of its merits. For this approach to work, you need a design process that includes
the client.

CHAPTER 01 The Business Side of Redesign

24

THE RIGHT DESIGN PROCESS

If you are a designer who works intuitively towards the final design, then you will find
collaboration difficult. The key to working collaboratively is to engage the client in de-
sign decisions. I am not suggesting that the client should sit with you as you design. But
they need to get involved in multiple stages of the design process.

I include the client in several stages of the design process:

•	At the ideas stage
Before beginning to work on a design, I sit down with the client to brainstorm ideas.
This is the time to look at websites that inspire them and to discuss color, typogra-
phy and imagery. It is also the time to discuss personality. A great question I ask
is, “If the website was a famous person, who would it be?” This helps both parties
visualize a character that you can emulate in the design.

•	After mood-boarding
After the initial brainstorming session, I go away and produce mood boards that re-
flect different design directions. I then discuss these with the client and refine them
further. I don’t make them too polished. They need to be easy to produce so that I
can iterate quickly. This is my chance to explore different aesthetic approaches at
once.

•	While wireframing
I always schedule a wireframing meeting in which the client and I (and even other
stakeholders) sit down and sketch out different layouts for key pages. The wire-
frames don’t need to be high fidelity—just enough to leave the client feeling like
they have contributed to the direction of the design. I then refine them after the
meeting.

•	When refining design comps
When the time comes to present the client with a design (or HTML prototype), it
won’t come as a surprise because it will have been based on mood boards and wire-
frames. But I still give the client an opportunity to discuss any last-minute issues
before producing the final iteration.

The Business Side of Redesign CHAPTER 01

25

You will be pleasantly surprised by how little iteration is required when following this
approach. Clients are often happy to sign off on work with only a few changes because
they have been included in the process from the beginning. A word of warning, though:
things can go wrong when the design is shown to people who were not included in this
process. This is when the presentation of the design really matters.

PRESENTING THE DESIGN

All of your hard work on collaborating with the client could be for nothing if they are
not the final decision-maker. Working closely with the client makes it much more
likely that they will defend the design internally, but someone seeing the design for
the first time won’t have that wealth of information with which to make an informed
judgment.

The only way I have found around this issue is to present the design to these other
decision-makers. This way, I ensure that they see the thoroughness of my process and
hear the thinking that went into the design as well.

Ideally, this meeting would be face to face or over a conference call. But that is not
always possible. Another solution I have found to work is to submit the design with
an accompanying explanation. This works well as a video file with a voice-over. This
ensures that nobody sees the design without also hearing the explanation of the design
process.

Thus, viewers will not judge the design purely on first impression. In my experi-
ence, clients love it, too. Many clients have commented on how much more impressive
this way of presenting a design is than a static image. A video also works well now that
websites are becoming increasingly dynamic. Instead of a static image, you can show
JavaScript elements and even responsive design when needed. Best of all, the web-
site doesn’t need to work across browsers; as long as it works in one browser, you can
record it. Of course, no matter how well you present the design, things can go horribly
wrong when stakeholders start providing feedback.

Dealing With Feedback Through Testing
We like to think of ourselves as rational human beings. In reality, we are not. We are
swayed by everything from childhood experience to having missed our cup of coffee in
the morning!

CHAPTER 01 The Business Side of Redesign

26

Nowhere is this kind of emotional response more apparent than in people’s reaction
to design. Everyone knows what they don’t like, and we all like different things. One
of my clients even rejected the color of a design because it reminded them of the dress
that an elderly relative wore!

With design being so subjective, finding consensus on the look and feel of a website
is hard. Although there are underlying principles of design, there are also factors that
can make a piece look great to one person and terrible to another. Left unchecked, this
turns the approval phase into a lottery. Fortunately, there are things that can be done.
The secret is: psychology.

As humans, we like to feel that we are consistent in our views. That is why a client
who has been involved in creating a design is much less likely to reject it. That would be
a contradiction.

The other way this consistency works to our advantage is that people like to consid-
er themselves as being logical. If you present a logical, objective argument for a design,
the listener is more likely to accept it because they feel they should respond logically.
This desire to be consistent with their self-image can even outweigh their personal dis-
like of the design.

I remember producing a design for the higher-education sector a few years ago. The
website was squarely aimed at what was then the MySpace generation. I personally
hated the design, and so did the client. However, user testing showed conclusively that
the busy design and garish colors struck the right tone with the users we were aiming
at. Our personal opinion had to be set aside in face of the data.

This is why testing the design is so important. It moves decisions away from subjec-
tive opinion and towards objective research. It also puts the focus back on the user.
The client might hate the design, but if it resonates with users and achieves the client’s
business objectives, then they can be convinced.

How then do you persuade a client to adopt a testing-centric approach when rede-
signing their website?

SELLING USER TESTING TO THE CLIENT

The problem with testing is that it takes time and money. Many clients are unwilling to
pay for this, instead preferring to rely on your “expertise” and their personal prefer-
ence. Because cost is their primary reason for not testing, money has to be part of your
justification for testing. When encouraging clients to test, I mention two financial
benefits.

The Business Side of Redesign CHAPTER 01

27

First, testing can significantly increase the effectiveness of a website. It ensures that
the design communicates your messages clearly, and it guides the user to complete
calls to action. Ultimately, this makes the website more likely to generate a significant
return on investment.

Secondly, user testing can save a significant amount of money. Without testing,
having to reverse course after going down a path that is found to be ineffective is all
too common. There are even times when you will drop entire features because testing
shows that the user does not need them. By testing early and often, you catch issues in
the user interface and feature set before having invested too much time.

In short, without user testing, the redesign process is blind. There is no guarantee
that the result will be effective, and mistakes will inevitably be made along the way.
Once the client is on board with testing, you need to choose the most appropriate type
of testing.

WHAT TYPE OF TESTING TO CONDUCT

Several options are available, and picking the right one for the job is important. I’ll
focus on the three that I use most often.

Surveying is not used extensively by the Web design community as a method of
soliciting user feedback. But it can be effective in certain circumstances. I have worked
with clients from the sciences who question the value of testing a handful of subjects.
From their perspective, the sample size would be too small to be statistically relevant.
A survey proved to be the solution because it involved considerably more people.

For this to be most effective, the questions need to be limited to multiple choice,
thus making comparison possible.

Surveying is well suited to certain questions:

•	Choosing between two subtly different design approaches;

•	Getting feedback on whether a design communicates the right brand keywords
	 (for example, is the design casual or professional, conservative or liberal?);

•	Asking the user which of a limited set of options they would click on;

•	Conducting closed card sorting (where the user has to organize pages into set
	 categories).

CHAPTER 01 The Business Side of Redesign

28

There is no shortage of tools to support this kind of online user testing. Two that I
pesonally use are Verify4 and WebSort.5 The benefit of surveying is that a large statisti-
cally relevant set of responses constitutes a strong business case for a particular design
approach, which will give the client confidence in your decisions.

GETTING DESIGN FEEDBACK

The second type of user testing is design testing. This is where the interface is tested for
usability and aesthetics.

Typically, I run design testing near the beginning of the design phase, with a
relatively large group of users (20+). They can be interviewed individually or in small
groups. I run a number of tests, but two of the most common are the emotional re-
sponse test and the flash test.

In the emotional response test, you show the user a design and (as described above)
ask them to choose between keyword pairs. Is the design busy or spacious, classic or
modern? The idea is to judge whether the design is in line with the image you are trying
to communicate. The keywords that users choose should include some of the desired
results. If users pick these words, then I know I am on the right track with aesthetics.

Sometimes, though, these emotional tests can have surprising results. My colleague
showed one of our designs to an elderly lady, and on seeing it, she burst into tears! The
dog featured in the design just happened to look like her deceased pet. This shows that
when it comes to design testing, you need to look for trends in results rather than indi-
vidual comments. The flash test focuses on content and visual hierarchy. You show the
design to the user for a few seconds and then remove it. You then ask them to recall items
from the page.

The items recalled and their order gives a good indication of whether the design
puts emphasis in the right places. For example, if a user fails to mention your primary
call to action, then something obviously has to change.

Both of these tests can be carried out as surveys and, thus, include considerably
more users. But speaking with users face to face has benefits. It gives you not only a
better understanding of users, but the chance to follow up with questions and delve a
little deeper.

4 Verify App, smashed.by/verify
5 WebSort, smashed.by/websort

The Business Side of Redesign CHAPTER 01

29

USABILITY TESTING

Probably the best known form of user testing is usability testing. As the name implies,
this tests the usability of your design, rather than its aesthetics. The subject has been
written about extensively by the likes of Steve Krug, Jakob Nielsen and Jared Spool, so I
will not go much in depth here.

I do want to emphasize that the success of usability testing depends on doing multi-
ple rounds throughout the lifecycle of the project. For years, I left user testing until the
end of a project, when it is too late to make changes. Testing at the end also leaves no
opportunity to carry out further rounds to confirm the effectiveness of improvements.

For testing to be effective, it needs to be integrated in every stage of the redesign
process. We need to test everything from sketches to mood boards to the final build.
Doing one-off tests is not enough.

WHEN AND WHO TO TEST

The reason why testing is so often reduced to a token session at the end of the project is
because of its perceived expense. People believe that finding participants and running
sessions is time-consuming and expensive. Let me assure you that this is not the case.

Usability testing seldom requires demographically representative participants
to yield valuable insight. Most of the usability hurdles we encounter are common to
everybody.

Recruitment for survey participants needs little more than a link on the existing
website. The exception to this is design testing, which does require a little more effort
for recruitment. The number of participants needed is relatively high, and getting the
right people does matter. But the tests themselves can be run anywhere and require no
special equipment.

I have only ever attended one user testing session that was held in a proper test
center with two-way mirrors and video hookup. In my opinion, it was actually less
effective than guerrilla-style testing. By keeping the testing lightweight, you are much
more likely to hold sessions regularly.

Ultimately, testing produces better websites and makes it easier to get client ap-
proval. That said, clients will still want to have their say, and so we need to be able to
manage their feedback.

CHAPTER 01 The Business Side of Redesign

30

DEALING WITH CLIENT FEEDBACK

Although testing with real users helps guide the client away from personal opinion,
they sometimes also need help providing the right kind of feedback on a design.

We make things worse by asking them, “What do you think?” and “Can you give me
your feedback?” By talking in this way, we are encouraging them to express personal
opinion. Instead, I ask clients a series of specific questions when seeking their feedback
on a particular design. Some good questions are:

•	Do you agree that the redesign reflects the organization’s brand values?

•	Does the redesign meet our agreed business objectives?

•	 Is the redesign in line with the personality we discussed?

•	Will this redesign encourage users to complete the agreed calls to action?

•	Does the redesign reflect the approved mood boards and wireframes?

•	Have we accommodated all pertinent feedback from the user testing sessions?

This is when all of your work up front pays off. Being able to refer back to approved
mood boards, wireframes, user testing and so on focuses the client less on personal
opinion and more on business objectives and user needs.

Fixation on personal opinion is not the only problem. Client feedback also often
consists of a list of design changes they want you to make. Unfortunately, these chang-
es are not always for the better.

I actively encourage my clients to suggest how a design can be improved. After all, I
believe that clients can provide valuable insight, especially if you have been engaging
and educating them throughout the design process.

Things become challenging when the client suggests a solution to a problem that
they have not articulated. For example, a client may well tell you to change the color of
the design from blue to pink without explaining that the reason is because the audi-
ence is pre-teen girls.

Without knowing the problem, you cannot suggest a better solution or judge wheth-
er the client’s idea is appropriate. Getting the client to express problems rather than
solutions, therefore, is important.

When the client falls into the habit of suggesting solutions rather than expressing
problems, a simple reminder often gets them back on track. Failing that, fall back on ask-
ing why. As I have said, asking why helps the client work back to the root of the problem.

The Business Side of Redesign CHAPTER 01

31

The focus of this chapter has been on the logistics of working with clients to produce
business-driven websites. We have looked at how to research and test your project,
as well as the best way to work with clients. Before concluding, let’s look at the long-
term viability of the website you are building. In particular, how do we future-proof a
redesign?

Redesigns That Last
I must confess that, as a Web designer, I have sometimes been short-sighted in my ap-
proach to building websites for clients, to the detriment of both my clients and my own
business. I am sure I am not alone.

This short-sightedness is not entirely our fault. It is largely born of the culture of
redesign that I talked about earlier. When the client commissions a new website every
few years (often with a different designer each time), there is little point in planning
for the long term.

I have explained the drawbacks of this approach, both for the client (in terms of the
effectiveness of the website) and the designer (in terms of repeat business). Therefore,
we need to establish an ongoing working relationship with our clients, rather than one-
off engagements. This holds true whether we are realigning a website or redesigning it.

ESTABLISHING AN ONGOING PROGRAM OF WORK

As we have discussed, there is a strong case to be made for ongoing investment in a
website. However, realizing something in principle and doing it in practice are differ-
ent things. Putting in place mechanisms that ensure ongoing investment is important.

I have already suggested wish lists and phased development as ways to encourage
your client to plan for the future. But those are not the only options. We also arrange
quarterly calls with clients to discuss ways in which their websites can be improved.
We also offer an annual website review, in which we suggest improvements for the
coming year.

Whatever mechanism you use, whether email newsletters or annual reviews, the
aim is the same: to demonstrate how the client’s website can be taken to the next level.
And remember that you cannot just show them new functionality or technology. You
need to explain the business benefits it provides. Only then will they see the return on
the cost of employing you to implement the idea.

CHAPTER 01 The Business Side of Redesign

32

Not that an ongoing program of investment is the only way to future-proof a website.
There are also technological solutions.

USING TECHNOLOGY TO FUTURE-PROOF WEBSITES

We should remember why we do what we do as Web designers. If we forget, then bad
practices start to creep in. A case in point is Web standards.

At the heart of Web standards lies a simple principle: that we should separate con-
tent, design and behavior. One of the many benefits of this approach is that it makes it
easier to change a website in future.

Web standards help to future-proof our websites. And yet, I see an alarming num-
ber of websites built with CSS, HTML and JavaScript that do not make this clean sepa-
ration: JavaScript either is inline or relies on the presence of certain HTML elements,
and HTML is stuffed with classes and IDs whose sole purpose is to set the design. Don’t
misunderstand me: I am not a code purist. I know that a degree of crossover is some-
times inevitable. But as you code, ask yourself how the decisions you make will affect
updates a year or two down the line.

Another issue that arises related to future-proofing is browser support. As Web de-
signers, we talk a lot about supporting old browsers but little about supporting future
browsers. We need to ensure that our websites are accessible on older browsers, but we
also need to build for the future. Accommodating an old browser whose market share
is only going to decline at the expense of support for upcoming browsers makes little
financial sense.

I am a great believer in building websites using HTML5 and CSS3 because we know
that these technologies will become more widely adopted. We are building for the
future, not fixating on browsers whose market share is dwindling. Obviously, there is
a balance to be struck, but one could argue that supporting older browsers is not the
best investment of limited resources. Speaking of support, I cannot devote a section to
future-proofing without mentioning mobile.

PLANNING FOR A MOBILE FUTURE

As Web designers, we get excited about mobile. However, mobile is not yet at the top of
most clients’ agendas. For many clients, mobile usage is still relatively low, and so they
are unwilling to invest.

The Business Side of Redesign CHAPTER 01

33

Despite this, there is little skepticism that mobile will play a significant role in the fu-
ture of the Web. This means that even though the business case for mobile development
is weak in the short term, clients need to start planning for it now.

The steps that need to be taken will depend on the mobile strategy preferred by the
client. The client has a number of choices that we must guide them through.

First, they need to decide whether they need an app or a website. Apps are task-
oriented and highly focused, while a website tends to be content-driven and much
broader in scope. If the client decides on an app, then the next question is whether the
app should be Web-based or native. This is a complex decision and not one we can fully
address in this chapter.6

However, here are a few things to consider when discussing with your client:

•	What native features do you need to access?

•	Can you afford to develop for multiple platforms?

•	Are you willing to share revenue with the app store owner?

•	Will your app even be accepted by the app store owner?

•	 Is there a marketing benefit to distributing through an app store?

If the client decides on a website, then the choice becomes simpler. If the website will
go through a major redesign, then now is the time to make it responsive (i.e. make it
respond to the available screen space). On small screens (such as smartphones), the
layout would become simple and touch-friendly, while on large screens you would have
a traditional desktop layout.

If the website won’t be redesigned soon, then an adaptive approach is preferable.
Adaptive design is easier to implement on an existing website, while still enabling the
layout to change at key screen sizes (such as the tablet’s screen size). However, un-
like responsive design, it will not adapt to any layout, so although an adaptive website
might look great on today’s devices, it will not be optimized for future devices.

The Web is undergoing a yet another major transition at the moment, encountering
new technology, new devices and new ways of being used. It falls to us as Web design-
ers to help our clients prepare for this brave new world.

6 You can learn more about mobile considerations in redesign in Aral Balkan’s chapter of this book (p. 255).

CHAPTER 01 The Business Side of Redesign

34

Where From Here?
We have covered a lot of ground in this chapter, but gone into little depth. The idea was
to get you thinking beyond technology and design, to focus on the challenges faced by
clients and ensure that their websites are as effective as possible. What you need to do
now is put some of these principles into action. Here are some suggestions:

•	Become more than an implementer.
Work hard to change your relationship with clients. Stop being a pixel-pusher, and
work collaboratively with clients. Be willing to challenge them, especially when
they request a major overhaul of their website. Suggest a realignment instead, and
adopt a process that includes them.

•	Prepare before jumping in.
Resist the urge to leap into a redesign; rather, do some homework first. Make sure
you are well prepared for the risks, such as scope creep. Ensure that you under-
stand the business through stakeholder interviews and reviewing the current Web
presence.

•	Test everything.
Do not rely on your experience as a designer. Test as a way to make the design
process less subjective and to justify change. Testing will also help quantify the
potential return that a client sees from your work.

•	Plan for the future.
Work with your clients to establish an ongoing program of development that takes
their website into the future. Encourage them to plan for the mobile Web and for
future browsers, not old technology whose market share is declining.

So, there you have it. Hopefully, I haven’t completely demoralized you with all this
talk of ROI and business drivers. Actually, this can be exciting stuff. We are design-
ers, not artists; the main difference being that we produce things that solve problems.
Sometimes they are user problems, but usually they are problems that our clients are
experiencing.

The Business Side of Redesign CHAPTER 01

35

About the Author
Paul Boag (1972) grew up in Washford, England, attended the Uni-
versity of Portsmouth and initiated his Web career at IBM in 1994
when Web design consisted of Notepad, gray backgrounds and no
layout options. He is the co-founder of Headscape, through which he
works on Web strategy, writes about successful websites and speaks
at conferences around the globe. Occasionally, he releases podcast
episodes. Paul lives in a small rural town in the heart of the English
countryside, where he is heavily involved in the local church. He
loves to spend time playing Skyrim. Paul considers himself all pet’ed
out because his father is a wildlife photographer and they had eve-
rything from owls to deer passing through their home over the years.

His favorite colors are all shades of gray, and the biggest lessons
he has learned in his career are to be passionate and enthusiastic,
never to lose one’s love of the Web and to play with innovations.
Paul’s message to readers is that undertaking a successful redesign
has to be a collaborative approach with your client. You may not find
your client easy to work with, but without their knowledge of their
business and sector, the website will fail. What’s more, the client has
to love the design. If they don’t love their website, they will not in-
vest in it or use it to its full potential. You have an obligation to work
collaboratively.

About the Reviewer
Collis is a co-founder and CEO of Envato. He started the company
as a Web designer, Photoshopping and slicing and dicing most of
the early Envato websites himself. These days, Collis spends more
of his time planning, strategizing and emailing, but Web design will
always be where his heart is!

Selecting a Platform: 	
Technical Considerations
for Your Redesign
Written by Rachel Andrew
Reviewed by Ryan Carson and Harley Finkelstein

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

38

his chapter is for anyone involved in planning the redesign of a website. In
the previous chapter, Paul Boag discussed the business behind redesigning or
“realigning” your website. In this chapter, we will look at some of the technical

issues you might encounter as part of this task. A redesign of the user interface of your
website might not require an entirely new back end, and we’ll give you some things to
think about when making that decision.

Following Paul’s advice about research, we will need to learn everything we can
about the current website and the back end that drives it before jumping into the
redesign. Throwing away a lot of knowledge when replacing a system is very easy, so
even if you are completely redeveloping or moving to a new platform, learn all you can
from the existing one and avoid replicating the mistakes that previous developers have
made and already fixed.

Before making any decisions, you need to understand all of the technical require-
ments. Perhaps your redesign will bring new functionality that needs to be supported.
For example, if you are adding e-commerce functionality to the website, you will need
to understand how to take payments on the Web and what services you will need to use
in order to do so. You will have to be satisfied that your hosting arrangements meet the
requirements of the new website or of your development of the existing platform, so
we’ll also think a bit about hosting, what you’ll need and how to choose a good host.

The beginning of a project is a good chance to take stock and make sure that all
of your working practices are in good shape. So, we’ll finish this chapter with some
thoughts on development environments, version control and how to deal with replac-
ing a live website with a new version. As in the last chapter, we’ll be covering a lot of
ground here, and space limits us from doing so very deeply. Rather, our aim is to get
you thinking about the different aspects of your website and to pick out the bits that
apply to you as a basis for further thinking and research.

Who Is This Chapter For?
This chapter will be useful to you no matter where you fit on the team that will be
redeveloping the website. Whether you are developing your own website, outsourcing
development to another company or working on a team with developers (perhaps in a
non-technical capacity), understanding the process will be beneficial to you.

Perhaps you are the person actually doing the development, either of your own
website (in which case you are the client) or of a website for a client or employer. In this

T

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

39

case, all of the information in this chapter should be of interest to you. Redesigns are a
fantastic opportunity for the developer. Your existing website or application will have
strong and weak points, but it will also have an existing user base and traffic that you
can study. Ignore this history and data at your peril; you might end up simply recreat-
ing existing problems or not including important features that users rely on.

When redesigning a website, you have a chance to find out from users and the own-
er what the current problems and pain points are. Is the content management system
(CMS) so difficult to use that no one updates the website any more? Do customers of the
online store constantly phone for help to place an order? Does the design constrain the
addition of text or images? If you fix these problems—by creating a CMS that people
actually enjoy using, or by halving the calls from confused customers—then your cli-
ent or boss will be hugely appreciative of your work. Hearing that your work has made
someone else’s daily life better or has improved their business is very satisfying.

If you will be outsourcing development of the website, this chapter should still be
of interest. We won’t be covering the more technical topics in great depth. Being able
to converse with your developers with a common understanding of the issues involved
should make communication easier.

Perhaps you are serving in a non-technical role; for example, working purely on
design or doing project management or copywriting. Likewise, understanding what
the developers are doing will only help with communication.

Learning From the Existing Platform
As mentioned, learning everything you can about the website you will be replacing
is vital. This involves assessing the existing website but, more importantly, speaking
with the people who use it. Users include the website’s visitors as well as the people
who own and run the website.

In assessing the website, find out what it does well. This could be anything: perhaps
the client really likes the look of the website and feels it represents the brand well, or
perhaps it performs well on search engines, or perhaps users will tell you that they
find the website easy to use even without all of the bells and whistles being requested
by the client.

When speaking with the people who add content to the website, find out if they con-
sider certain features of the current system invaluable. If you are considering replac-
ing the platform, take note of the things that people use to do their job. Many people

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

40

build their entire workflow around a system, and if you take away their ability to run a
certain report on orders or to edit a blog a certain way, then you could make it hard for
them to do their job. If you don’t replace that functionality, then you had better present
a superior system!

Every system has something that drives everyone who uses it insane. But even if
you were involved in maintaining the current website, don’t assume you know what
that thing is. Time and again, I have seen non-technical users assume that a bug in the
system was their fault and so do not report it. Every time the system fails to save some
data, they think, “I’ve done it again!” and then repeat the task. Rather than raise the
problem, they mark it down to their inability to use computers.

Ultimately, even if the user is at fault, if the system allows work to be lost on a
regular basis, you might be able to put something in place to prevent this from happen-
ing. And yet glaring bugs often go unreported for months, with users simply working
around them. If you will be keeping the existing system, then finding and fixing these
pain points will really benefit the people who use the system every day.

For systems that people spend a lot of time working with, it is worth seeing those
people’s workflows. What jobs do they perform on the system day to day? Very often the
person doing the job is not aware that a new system could actually take away some of
the grunt work in their job.

I have often seen people do repetitive data entry—for example, entering the same
information in several places or copying data from one report to another—when auto-
generating a report or adding a script to the CMS that copies data from one place to
another would be very simple. By looking only at a content-managed website or e-com-
merce system, you would not see these workflows; so, if at all possible, sit down with
the administrator and see what they do.

If you are considering a redesign, then the challenges are probably not just visual;
rather, you need the website to do things that it currently cannot do. Do you want to
start selling items online? Have you decided that the website finally needs a CMS? Is
the current CMS difficult to use, or does it not support the type of content you want to
create?

Knowing what it cannot do will give you something to go on when deciding whether
to replace the system or build on top of it. Once you understand how the website or ap-
plication serves users and administrators, you can move on to gathering the technical
requirements for redevelopment.

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

41

Gathering the Technical Requirements
The previous chapter looked at website requirements. In this chapter, we are look-
ing at how to fulfill these requirements technically. Be wary of any specification that
says, “We want it to do everything that the current system does”—unless you built the
current system! If the client wants that, make sure to get the details of everything that
will be required in the new system.

Failing to do so will almost guarantee that, just as you’re close to launching, you will
be asked how the system supports a task that half of the staff does every day (when, in
fact, it doesn’t), thus forcing major additions to your project. I speak from experience!

CONTENT MANAGEMENT

Almost every website requires some form of content management. This could take the
form of updating pages of content, adding products to a store, or editing bits of text
in a Web application. How much management over the content will the client need,
and who will be editing the content? In this chapter, we will use the term “CMS” very
loosely to describe any tool for editing content—be it a simple editor for changing text
to a full-featured enterprise-level CMS.

Figure 2.1. Someone choosing a CMS will face dozens of options. The only way to
decide what will work for your project is to understand the requirements.

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

42

Here are some considerations to make when choosing a CMS:

•	Will all content editors need the same level of permissions?

•	Will the content management be done by dedicated editors 			
	 or as part of other people’s jobs?

•	Do multiple languages need to be supported?

•	What type of content will be edited?

•	What kind of editing environment is needed?

Will all content editors need the same level of permissions?

Will there be one editor (e.g. the owner of a small business), or will several editors need
to work on the website? If the latter, will the editors have equal privileges, or will some
be able to access parts of the system that others cannot? Here are some scenarios:

•	The website for a large company is managed by one person, who signs off on 	
	 all content, although several people produce content for the website. The client 	
	 would like these editors to be able to create content and submit it for review. 	
	 Once approved, the content would be published by the managing editor.

•	A company wants its HR department to be able to publish and take down posts 	
	 for job openings at the company and to manage the section of the website that 	
	 deals with HR issues. These users should not be able to change other sections of 	
	 the website.

•	The owner of an e-commerce website does not want their content editors to be 	
	 able to view sales reports or customer information collected by the system. 	
	 Conversely, they want to give their accountant access to sales figures but not to 	
	 the content on the rest of the system.

•	The owner of a website wants volunteers to be able to post to the blog but not to 	
	 change content in other parts of the website.

Will the content management be done by dedicated editors or as part of
other people’s jobs?

Understanding the abilities of the people who create and edit the content is important.
This refers not only to technical ability, such as whether they are familiar with us-
ing a CMS or are even technologically literate, but to whether they have design sense

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

43

and would expect some measure of control over how things look. Also, consider their
ability as copywriters. If the content will initially be written by a skilled copywriter
but then maintained by the owner or by an employee who is not a copywriter, then the
CMS could help them figure out what to write and how to write it. I have addressed
this in the article “Your CMS as Curator of Your Design and Content”.1

Even if the website will launch with only one language, but support for additional
languages will be required in the near term, then provisions should be made for these
languages. Retrofitting a website to support multiple languages is much harder than
building in support from the start. Of course, this requirement could narrow your op-
tions of off-the-shelf software.

If a website is to be translated, then find out how the translation process will work
so that you can support it in the system. Will translators simply work in Word docu-
ments or the like, translating all of the content and then sending the documents back
to the editor for inputting? Would it be more helpful if the translators could read and
translate the content directly from the CMS?

What type of content will be edited?

Most websites that require a CMS have relatively static pages and a fairly standard
tree-like structure. The most logical way to organize this content is based on pages, so
that administrators can easily find the pages they want to edit.

Some websites essentially have a blog as their main feature, with some supporting
pages. So, you and the client might decide to use a CMS such as WordPress, which has a
strong blog at its core but with the ability to add traditional pages.

Larger websites will have more complex requirements for content. For example,
we are currently involved in redesigning a website for an arts festival. The festival
is in the fortunate position of having many years’ worth of video and audio material
and thousands of high-quality photographs that were taken each year by professional
photographers.

While much of the website is page-based, expecting content editors to sift through
an offline archive and re-upload relevant material every time would be very inefficient
and not the best use of the material. Instead, we have created a separate media server,
with tools to search through and tag these resources, making them easy to find and
embed on pages. The CMS also prepares the images at the correct sizes, including the
sizes needed for the website’s responsive design. Learning about this archive of mate-

1 Andrew, Rachel. “Your CMS as Curator of Your Design and Content,” smashed.by/cms-curator

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

44

rial and the problems inherent in dealing with it enabled us to propose such a solution.
Other websites could be described more as Web applications, be they e-commerce systems
or traditional Web apps. These systems are not focused on page-based content (although
they might have some), but rather on various types of content that need to be easily updat-
able. All too often, all of the microcopy is hardcoded into the application itself, so that
changing the text in a call to action would require work of the developer. Ideally, this text
would be handled in such a way that non-technical users could change it.

A/B TESTING

With many websites, particularly those that sell products, you will need to test dif-
ferent versions of pages in order to see which content, layout or flow leads to the most
conversions. Depending on the type of website, a conversion might be someone buying a
product through the website, signing up for a product trial or a mailing list, or filling out
a form. If this kind of testing is required, how will that be managed in the CMS? If you
need to send some visitors to one version of a page and others to another, then you will
need a strategy for this. If you would like to learn more about this type of testing, there is
a comprehensive article on “The Ultimate Guide to A/B Testing” on Smashing Magazine.2

E-COMMERCE

Adding e-commerce functionality to a website can be as simple as adding a few PayPal
“Buy now” buttons or as complex as rolling out a large third-party store or developing
one yourself. Selling products directly from a website doesn’t need to be hugely com-
plex these days, but you do have a lot of options to consider depending on the type of
product. In this section, we’ll run through some of the options to think about. This will
be particularly helpful if you will be implementing e-commerce functionality for the
first time, because it can feel like stepping into unfamiliar land.

What are you selling?

Perhaps your online store sells physical products that will be shipped to customers via
postal service or courier. Or perhaps the products are delivered electronically, such
as eBooks, music or software. Donations and subscriptions are types of transactions
to consider as well. If the products are downloadable, then consider how they will be
delivered to the customer upon payment.

2 Chopra, Paras. “The Ultimate Guide to A/B Testing,” smashed.by/abtesting.

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

45

What will the shopping experience be like?

Will only a single item be sold (such as an eBook) or will visitors need to be able to
browse products and add multiple items to their cart? Do the products come with op-
tions (for example, size and color for t-shirts)? Are categories needed to make browsing
easier? Should an item be restricted to one category or be found in several? Would tags
be useful, or links between related items (say, to allow the owner to promote accesso-
ries for a product)?

Will the website have special offers: “Buy one, get one free”, “20% off”, “Two for the
price of one” or “Buy X, get Y at half off”? Setting up these kinds of offers on a custom-
built system can be quite complex. And if you will be using an off-the-shelf CMS, then
you will need to know whether it supports them.

The devil (and the budget) is in the details. Of all the websites I have worked on, the
type most prone to scope creep is online stores. Ask all of these questions as you plan
the process. Wanting every possible feature is very tempting, but if you are building
the CMS yourself rather than using third-party software, you can cut development
time significantly by doing things more simply.

Figure 2.2. What might seem like a simple product can have a number of 	
options; for example, t-shirts in men’s and women’s fits and in various sizes.

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

46

Accounts and tracking orders

Part of the user experience could include managing an account and tracking orders.
Must users create an account, or will it be optional? Can they track their orders and
watch them move from “Processing” to “Shipped”? Accounts should include basic
management functionality, such as resetting forgotten passwords and updating contact
details.

How will you take payment?

You will likely need to accept credit- and debit-card payments from customers. There
are a number of options, varying in complexity and cost. Common ways to process
payments include PayPal, a custom merchant account and payment gateway, and third-
party software as a service (SaaS).

Taking payments online with PayPal is straightforward. The advantages are that
creating an account is easy, no credit check is needed, and integration can be as simple
as hardcoding a button on the page and as elaborate as full integration. Google Check-
out offers a similar service (and a similarly low barrier to entry), as does Amazon (in
the US) through Amazon Payments.

Figure 2.3. Stripe.com is a new player in the market, offering an easy way to
take payments.

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

47

The payments market has other players, but many of them operate in only a few coun-
tries, the reason being that many of the laws for processing payments are country-
specific. If you need to take recurring payments, then Chargify and Recurly might be
useful. And although currently US-only, Stripe looks promising as a simple method to
take payments online.

To accept card payments directly, rather than through a third party, you will need
an Internet merchant account. This enables you to take credit-card payments and to
process the money to your bank account. If you have an existing merchant account for
brick-and-mortar or telephone sales, you might not be able to use it for online transac-
tions. Internet transactions are riskier, so to start transacting online, you’ll need to
contact your bank. The bank will require that you adopt measures to secure payments,
in most circumstances via a payment service provider (PSP, sometimes called a pay-
ment gateway).

What you should definitely not do is store credit-card details in order to enter them
in an offline terminal later. This would be against the terms of the merchant agree-
ment. So, unless you have written permission from your bank to do this and are com-
plying with the PCI DSS (which we will discuss later), just don’t.

THE PAYMENT GATEWAY

The purpose of the payment gateway is to enable you to take a card payment from a
customer, validate the card number and amount, and then pass the payment to your
bank securely. You can interact with a payment gateway in one of two ways:

•		Pay page
The user moves from your website to a secure page on the payment gateway
server to enter their details.

•	API integration
The user enters their card details on your website (on a page installed with a
secure certificate, running SSL), and those details are then passed to the gateway.
Your website acts as the intermediary; the user is not aware of the bank transac-
tion taking place, having seen only the transaction on your website.

The advantage of integrating a pay page is that your website never touches the card’s
details, so you are not liable for the customer’s security. The most significant disad-
vantage is that you lose some control over the payment process, because the final step

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

48

requires gathering all of the details to pass to the payment server. Also, you are seldom
able to customize the payment screen, even with just a logo.

Many store owners are concerned about this break in the user experience; they fear
the user will abandon the transaction before reaching the payment page on WorldPay
or another server. But transferring the user to the website of a known bank to enter
card details might actually instill confidence in the legitimacy of your website.

When an unfamiliar website (perhaps that of a small retailer) asks me to enter my
card details, I immediately worry about how it will handle them. Will my card’s num-
bers be displayed in plain text? Will the details be stored in a database on the website’s
server somewhere? Even if the page has a secure certificate and checks out, I still have
no idea what will happen to my details after I hit “Submit.” But if I am taken to a known
PSP page in the final step, then I can be confident that my details are safe and that the
unfamiliar website isn’t handling them at all. I would trust WorldPay with my details
far more than Joe Blow’s Widget Store.

Another advantage of a pay page is that, should the regulations for card payments
change, they will be handled by the PSP. For example, 3-D Secure (which is the protocol
underlying Verified by Visa and MasterCard SecureCode) was a requirement of one of
our clients so that they could accept Maestro payments. 3-D Secure requires that users
verify their payment on a page from their bank before the payment can be authorized.

If we had used an API, we would have had to edit the code in order to integrate
3-D Secure; but because we used a payment page, we simply notified the PSP, which
switched on this functionality for the account.

These points have swayed many website owners to use a pay page, with many own-
ers recognizing that being responsible for credit-card details is more trouble than it is
worth.

Integrating a pay page should work with most off-the-shelf software. After a pay-
ment is made, the page typically sends back something that enables your website
(which has a script running for this) to identify the user and the transaction and to
process any post-purchase data that may be needed (such as marking the order as
“Paid” in the database or giving the customer access to the digital product).

The advantage of full API integration is that you control the payment process from
beginning to end, including the look and feel of the payment pages. But you are also
responsible for the security of the user’s card details, and regulations require that you
prove you are following best practices.

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

49

PCI DSS

The Payment Card Industry Data Security Standard (PCI DSS) is a set of 12 requirements
that all businesses that accept card payments must comply with. This covers not only
online transactions; a brick-and-mortar store that takes payments online must also
comply with the PCI DSS for both its offline and online payment methods.

If you are merely taking online payments via a pay page and do not receive, process
or store any card details at any time, then you can complete the shortened PCI DSS
questionnaire (SAQ A) to confirm that your PSP is PCI DSS-compliant. If you use API
integration, then you will need to comply fully with the PCI DSS (even if you do not
store card details), including by allowing quarterly security checks that verify ongoing
compliance. Explaining PCI DSS compliance in detail is beyond the scope of this article,
but if you are involved in developing a website that will take card details without a pay
page, then you should acquaint yourself with it, or retain the services of someone who
knows it.

Storing card data

I strongly advise against storing card data on the client’s server, even in encrypted
form. Doing so would require you to comply with the PCI DSS and to maintain a server
and network capable of keeping this data safe. If you need access to card data in order
to charge for recurring fees, for example, you could look into payment gateways that
offer data-storage services.

If you are considering storing card data only to be able to offer “one-click” ordering
(as Amazon does), please be careful. Do you really want to be liable for your customer’s
data? Are you willing to deal with the extra and ongoing expenses of maintaining
compliance?

Multiple currencies and local taxes

You will likely need to account for local taxes, or VAT in Europe. Understanding
exactly what taxes to collect can be difficult enough, but you also need to ensure that
your system can process them correctly. For example, my company has a downloadable
product, a mini-CMS named Perch. Our company is registered in the UK, so we need to
collect VAT from UK buyers. We also need to collect VAT from European Union buyers
unless they have a valid VAT number. If the buyer lives outside of the European Union,
then we do not need to charge VAT. So, our system has to be able to validate VAT num-
bers as well as correctly calculate prices with and without VAT.

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

50

Most stores take payment in a single currency. To accept multiple currencies—that
is, to allow visitors to select their currency, see the price in that currency and make
their payment—you will need to set the required currencies in your merchant account.
Another option is to display prices in other currencies while accepting payment only in
your local currency; you could either update the exchange rates manually or automate
the process with an API. If customers may pay only in your local currency, then they
will need to understand that the conversions are displayed solely for information and
that the actual price might differ slightly (owing to fluctuating exchange rates).

Getting advice from an accountant when dealing with money is always worthwhile,
especially if you will be accepting payments in a foreign currency or in multiple cur-
rencies. Getting advice from the start on how to handle payments and exchange rates
could save you a lot of trouble later on.

WHAT ABOUT DELIVERY?

If you are selling physical products that need to be shipped, you will have to somehow
charge for shipping costs and perhaps arrange for order-tracking. Because you are sell-
ing online, you could attract customers from other countries, so you will have to decide
how to calculate shipping to different destinations, or else limit shopping to people in
your country or a few countries.

Figure 2.4. Perch’s payment page, listing the VAT, a discount and approxi-
mate pricing in Euros and US dollars. Despite only a single product being
sold, several variables still need to be taken into account.

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

51

Typically, online retailers offer free shipping on orders of a certain price or higher.
They also typically offer shipping with different carriers, such as the regular postal
service and priority courier (depending on when the customer wants to receive the
product). Consider these things when planning your website.

DIGITAL PRODUCTS

Customers expect to be able to download digital products (such as eBooks, music and
software) quickly after purchasing them. Delivery could take the form of a Web link or
a downloads page in their account profile (along with a license code if required).

The system will need to be able to secure products prior to purchase and provide an
area in the customer’s account where the product can be accessed (or at least to send a
link by email). Product codes might also need to be generated. Again, third-party sys-
tems can handle this as part of a bundled payment service.

REPORTING AND OTHER FUNCTIONALITY

Your client will want to process orders as soon as they come in, and perhaps also mark
items as shipped once they have been processed. Being able to load this data into some
form of CSV file to be merged onto mailing-address labels would likely be helpful, as
would being able to export payment information to an offline accounting system.

Here are some other questions to ask yourself or the client:

•	Do you need to be able to control stock through the website?

•	How do you want to deal with orders that can only be partially fulfilled?

•	Should the website generate invoices, or will this happen offline?

INTEGRATION WITH OTHER SYSTEMS

Many websites do not exist as standalone systems but rather are integrated with other
systems and services. Integrating log-in credentials from third-party networks is
fairly standard, and you might also need to communicate with third-party systems for
stock control or accounting, particularly with e-commerce stores.

A few years ago we developed a website for a university that enabled students and
staff to update their details and to request certain forms from the university office.
Therefore, log-ins to the website needed to be secure. For a typical website, we would

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

52

use our own authentication classes with the CMS; in this case, we were required to
work with the existing credentials of students. This information was stored in LDAP,
so we had to have the website authenticate users against the university’s LDAP server.
This entailed writing a new interface for our standard CMS authentication system that
authenticated via the LDAP server. But when working with a third-party system such
as this, actually writing the code is usually the easy part.

A lot of time was spent getting access to the LDAP server and finding out what was
needed in order to confirm a log-in. Because we were deploying our own CMS and
could write a new interface for the authentication, the actual coding part of this job
was straightforward. A requirement like this, though, could effectively rule out cer-
tain third-party CMS’ if there is not an easy way to change how authentication works
while leaving the software in an upgradeable state.

For another job, we developed a custom e-commerce system for a clothing store that
wanted to sell its products online. The store sold limited-edition designer clothes. For
many of the designs, only one shirt per size was available. And because the shirts could
be sold both in the physical store and online, the inventory had to be kept up to date
for both; an item sold online had to be immediately removed from the rack in the store,
and if an item was sold in the store the website had to be updated.

This set-up has obvious problems (an item could very well be sold online just as
someone comes to the till to pay for it in store), but the best we could do was ensure
two-way communication between the website and the in-store electronic point-of-sale
(EPOS) system.

The EPOS system was developed by another company, and so to link these systems
we needed to work with those developers. But any request made to this company could
mean a three-week wait for them to gather the resources to fulfill the request; this was
out of our hands, but it obviously had a big implication on the schedule of the project.

Being very clear in our communication and providing full details as well as a test-
ing interface helped to minimize the risk of delay. But if you know you will have to
work with a third party in this way, get details on the way they work and the expected
turnaround time for requests. This way, you can plan around their schedule.

Understanding from the outset all of the third-party systems that you will need to
work with is important. These requirements could well affect your choice of technol-
ogy and off-the-shelf software. You will also need to account for them in your and the
other companies’ timelines.

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

53

Constraints
Every project has some constraints. Personal ventures aside, most projects tend to be
limited in time, budget, available skills and a myriad of other factors. Work out what
these are before making any technical decisions, because you may find that the con-
straints close off some paths.

BUDGET

When thinking about budget, also consider time. Employing an external developer or
company to build the website will put further restrictions on the budget and timeline
within which you are able to complete the work. Even if the third party gives a firm
quote, it will fluctuate according to the amount of time they take for the work. Develop-
ing the project internally using your own resources also comes with budget and time
constraints—whether it’s the deadline for launch or simply a need to account for the
time spent by your team on the project.

In addition to pure development costs, you might need to take into account third-
party costs, because we are increasingly relying on third parties to provide resources
for our websites. Will you need to purchase stock photography or fonts? The hosting
costs could increase if your current provider does not meet the requirements of the
new website. An e-commerce store could incur additional charges if you move to a dif-
ferent payment method.

 Third-party software could bring licensing fees, although it should reduce develop-
ment time. You might also have to pay monthly charges for hosted services. Account for
as many of these costs as possible in the budget at the beginning of the project.

PROGRAMMING LANGUAGE DECISIONS

Perhaps your internal team or external development agency is skilled in a certain
development language. This will likely determine the language on which the website
is based, unless your reason to use something else is incredibly compelling. Good
developers have a lot of pre-written code and ways to solve particular problems in
their language. Switching to another language just because it’s hot will require a lot of
retraining and additional time, because the developers will have to write new libraries
for basic things.

Choosing a language other than the one your team is skilled in would be justified
if moving the project forward with the current language would be difficult (whether

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

54

because few developers know the language or because its development has stalled). Say
your system is written in Classic ASP, and the team that has been maintaining the
system for years knows Classic ASP. Because this language has been superseded by
ASP.NET and is no longer under active development, using it to build the new system
would not be sensible; after all, finding new developers who know Classic ASP will be
difficult, and the language, being so old, is not suited to the things we, as do on modern
websites.

If you find yourself in such a situation, then retraining your team in the new
language in preparation for the redevelopment would be the sensible approach. If the
external agency suggests that you rebuild in Classic ASP, then speak with them about
why they are pushing for this technology, and explain that being tied to outdated tech-
nology for a website that you hope to last for a few years is not forward-thinking.

If you are developing the website yourself and you feel drawn to learning a particu-
lar language, then as long as you can manage the delay in the project as you learn the
language, the choice is yours. Learning new things is always fun, but don’t drift from
one new thing to another just because everyone is talking about it. Knowing one lan-
guage deeply will always serve you better than skimming the surface of several.

If the project is for a client, then they will likely impose some constraints on your
time and budget. The constraints could also be technical (such as requiring you to host
internally on a particular server architecture) or political (for example, requiring you
to use open-source software).

TECHNICAL CONSTRAINTS

If the organization hosts its own websites, then it will probably have its own server
architecture. In this case, you will need to find out exactly what you will be deploying
to. For example, the server could be Windows, and the company could have or be able to
install PHP; this will save you trouble when deploying, because there are some differ-
ences between PHP on Linux and PHP on Windows (particularly if the server is run on
IIS, rather than Apache).

If the organization runs its own servers, then find out if you will have access to
test and deploy the application. In some projects, I was given no access at all, instead
having to package the code and databases and send them to an internal IT technician
for deployment. If that is your situation, then you will need to be able to replicate the
hosting environment for your own testing, because testing and making changes in a
live environment are difficult and time-consuming.

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

55

Having to integrate with any other system is, as stated, a constraint of some kind, and
certain third-party applications could be ruled out if you are not able to write plugins
to integrate them.

POLITICAL CONSTRAINTS

You might come upon constraints that derive from some organizational policy or the
preferences of key stakeholders. For example, a policy could dictate that any third-
party software be open source or that only Microsoft technology be used.

As an aside, the term “open source” is often misunderstood. When people specify
that software must be open source, they usually do not mean that it should have an
open-source license or even be free of charge; what they really want is to be able to
modify the code if required, so that they are protected in case the provider goes under
or abandons the product. If open source is a requirement, clarify what is meant by
that. Many commercial products have unencrypted and modifiable sources, despite not
having open-source licenses.

You can sometimes overcome political constraints by arguing why one solution
would be preferable to the one being requested. But you might have to make a strong
case, because if the stakeholder’s belief about a certain technology is deeply held, then
they will automatically be more skeptical of yours.

Should You Refactor or Rebuild?
The decision of whether to start with an entirely new back end for a website is never
an easy one. Even if the existing system has many problems, it can seem as if you are
throwing away a lot of money and effort by replacing it. In this section, we will look at
reasons why we might maintain a platform or build an entirely new one.

The temptation for a developer is to march in and build something new. After all,
who likes picking at someone else’s code? We all have our own way of doing things; we
have our own coding standards, and there are certain frameworks and systems that we
know well and trust. But by throwing everything out and starting over, we could lose a
lot of the knowledge built up from the existing system. If the website is for straightfor-
ward content management, then this is less likely to be an issue than if it is a complex
intranet or an e-commerce system to which a lot of small elements have been intro-
duced over time to solve particular business needs.

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

56

Ask yourself whether the current system really is so ill-suited to your requirements
that it should be completely replaced or whether it simply does not fit the way you pre-
fer to work.

Also consider the experience of those who are using the system. If many people are
adding content, updating products or performing other tasks with the software every
day, then they would need to be retrained. Refactoring and improving what is already
there instead, perhaps in stages, would save you that work.

Not to mention budget and time constraints. Starting over would mean that the client
would have to pay the full cost, both in money and time, to develop a new website. Refac-
toring enables you to spread those costs out, rolling out changes as they are completed.

But there are times when rebuilding from scratch makes sense. As mentioned, if
the developers are new to the website, then they would likely be happy to replace the
system with something they know well.

If you have hired an in-house developer or team or have started collaborating with
a third party with whom you intend to work long term, then moving to a platform that
they are experienced in could be reasonable.

As also mentioned, perhaps the coding language is outdated, or the website relies
on abandoned software, or the functionality you want to add would strain the current
framework. Avoid throwing good money after bad.

Another reason to discard the existing platform would be if it is making design
decisions for you. For example, a third-party e-commerce platform that imposes a tem-
plate design and user flow on the purchasing process could prevent you from making
improvements that you know would boost sales. Spending time identifying problems
and coming up with solutions, only to be prevented from implementing those solutions,
is frustrating for everyone involved.

Ultimately, deciding whether to start over or to refactor will require looking long
and hard at the current system and seeing how it aligns with current and future re-
quirements.

Custom or Third-Party System?
Assuming that you decide to replace some or all of the back end, you will need to
figure out whether to develop a custom solution or rely on third-party software and
services—or perhaps a combination of both. In this section, we will assess the advan-
tages of each approach.

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

57

WHY GO CUSTOM?

If your requirements are specific or unusual, then a custom system might be the best
way forward. Third-party software has to appeal to a large market in order for it to be
worth the developer’s time; also, adding a lot of features to make the software more
appealing to more people is tempting. The problem is that the system could end up do-
ing hundreds of things that you will never need. Unless it has been designed well, such
functionality could slow down the speed of your website, hanging around as unneeded
elements and adding overhead.

If your website gets a lot of traffic, and you know from the start that every line of
code in both the front and back end must be optimized, then developing your own
solution will enable you to consider this throughout the stack. My personal bugbear is
the inefficient use of SQL; some applications make hundreds of unnecessary database
queries, which becomes a problem under heavy load.

It may be that the license for some third-party software is inappropriate for the
application you are developing. It may be that the system has almost everything you
need, but adding that 10% of remaining functionality would require hacking fairly
deep into the software’s core. The problem with this is that getting support from the
software’s developer might be impossible if you have hacked the core, and upgrading
will be difficult, too. Making your changes through an official API is preferable; if you
cannot do that, then avoid hacking the software, because what you end up with will be
hard to maintain.

The advantage of designing and developing your own system is that you can tailor
it precisely to your requirements. Using off-the-shelf software would probably entail
some compromises, however well-written and customizable it is. Assess whether the
advantages of using something ready-made outweigh the benefits of tailoring some-
thing precisely to your needs.

WHY CHOOSE OFF THE SHELF?

Off-the-shelf software has obvious benefits. Instead of starting with a blank slate, you
can get something up and running relatively soon. If you need an easy way to manage
content or run an online store, and your requirements are fairly straightforward, then
one of the many solutions out there will likely meet your needs.

Some third-party software is free; others come with a licensing fee. With some, the
core product is free but you have to pay for add-ons. These can add up quickly, so think
about which add-ons you might need to complete the project. One system might include

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

58

everything in the licensing fee, making it cheaper than a free alternative for which you
would need several commercial add-ons.

Also find out how much support you are entitled to. With a lot of free software, of-
ficial support costs money or does not exist. Either way, there is probably a community
forum where users answer each other’s questions. Look in the forum to see whether
questions are answered quickly and how many people post entries.

If support is included, find out what form it takes. Are there restrictions on it? Is there
a waiting time? If there is a public support area, are questions answered promptly
by the staff? Twitter is also a good way to find out about the support and community
around a product; simply ask for opinions and see what response you get. A paid prod-
uct might be more valuable than a free alternative if the support is good.

HOSTED SOFTWARE-AS-A-SERVICE SOLUTIONS

A third type of solution to consider is hosted services, also known as software as a
service (SaaS). These are CMS’ that could serve, for example, as e-commerce solutions,
ranging from a hosted basket and payment page right through to a full-blown store.
The solution is attractive because you do not need to install anything to get up and run-
ning; it might be a case of just configuring some options and altering a template.

Figure 2.5. WordPress has busy forums for people who need help with the software.

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

59

Using hosted services can be a quick way to get your website up and running. Particu-
larly with e-commerce projects, hosted services offload the worries of security and
complicated functionality to a company that specializes in it. But there are some things
to consider.

The client will probably have to pay a monthly charge to use the service, so this
should be factored into the budget. Check whether the price varies according to your
traffic or number of orders.

Also, you cannot change how a hosted service operates. If the service changes some-
thing that affects your business, you have to live with it. You cannot code around the
problem the way you would with software that is hosted on your own server and whose
source code you have access to.

Your website will also rely on that third party sticking around, not going out of
business, and continuing to offer the service at a price that the client can afford. With
software installed on your own server, even if the provider goes out of business, you
still have the software; support for the software would probably discontinue, but you
could at least transition to something else in your own time. If you will be relying on a
hosted service, research it carefully to ensure that it is robust and that the company is
stable.

BEWARE THE EVANGELISTS

Users of certain products exhibit curious behavior sometimes. You can see it in action
by going to any public forum about Web development and simply asking, “What is the
best CMS?”

This question is practically useless, because it does not shed light on the problem
you are trying to solve. The reader has no idea whether your website is tiny, with only
a few bits of editable text, or vast, comprising thousands of documents and in three
languages. Yet within minutes, someone will tell you what their favorite CMS is and
then cheerfully argue why it is the best under any circumstance. These people are
evangelists: they love the software they use and cannot imagine why anyone would
use anything different. I’m a CMS vendor myself, and so I sometimes benefit from the
evangelists among our users, but I am also the first to say something when our solution
does not fit someone’s project.

When researching any third-party solution, whether an entire platform or just a
script, beware of the evangelists. Ask specific questions based on your requirements,
and you will likely get a better quality of opinion.

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

60

Hosting
We are frequently asked to recommend hosting providers and how to choose a good
host. There are thousands of hosting providers, offering what appear to be very simi-
lar services at widely different prices. How does one pick? Should you just choose the
cheapest provider that has the specifications you need?

CHEAP HOSTING IS EXPENSIVE

Many hosting providers market purely on being the cheapest; hosting can be found
for as little as $10 a year. But just because such cheap hosting exists does not mean you
should use it. It could cost you a lot more than the price of reasonable-quality hosting
in the long run. A good host is worth the cost, and if your client is pushing for a cheap
provider, then hopefully this section will arm you with good counterarguments.

A Web host that charges $10 per year would have to put hundreds of websites on
each physical server in order to make any money. This would likely push the serv-
ers over capacity, and one website that gets heavy traffic could slow down the others
or even take them offline. Google now uses website speed as a metric for its search
rankings,3 so slow response times not only would annoy visitors but might compromise
your ranking on Google.

For $10 a year, you probably will not get any technical support; offering full support
for that price would be difficult for any provider. If your website goes down or a prob-
lem is affecting your users, you need to know that you can contact someone quickly
and that the problem will be a priority. Customer service costs money; so, a low price
for hosting could well be at the expense of responsive support.

HOW TO CHOOSE A HOST

Your website will have certain requirements. For example, to run WordPress, you need
the following:

•	PHP version 5.2.4 or greater,

•	MySQL version 5.0.15 or greater,

•	Apache mod_rewrite module (for clean URIs, known as permalinks—optional 	
	 but required for MultiSite set-ups).

3 Google Webmaster Central Blog, “Using Site Speed in Web Search Ranking,” smashed.by/googlespeed

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

61

If you are using a server-side language or database, check that your host supports it
and supports the minimum version required by the software. As a rule of thumb, avoid
hosts that run very old versions of server-side languages. You can see what the current
version of PHP is by visiting php.net and checking under “Stable Releases.” At the time
of writing, the latest release is 5.3.9. A host that keeps up to date would be running a
version of 5.3, and certainly no version older than 5.2.4, as required for WordPress.

The host might maintain servers with older versions of PHP if it is supporting users
with legacy applications that cannot easily be updated, but it should be able to put new
accounts onto newer servers or to upgrade accounts when asked.

Databases

If you will need a database for your website (a WordPress blog, for example, stores its
content in a MySQL database), then check that the host gives you at least one database.
If you will be running a number of scripts, then installing each in its own database
might be easier, so check how many databases are allowed. As with server-side script-
ing languages, check that the version of the database software offered by the host is
compatible with the scripts you want to run.

Figure 2.6. Check the latest stable version of PHP on php.net.

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

62

Will you need email from the host?

If you would like to use the same provider for both email and hosting, check what it
offers. Does it have Web mail if you need it? Can you use POP or IMAP email? Is the
interface for setting up mailboxes easy to use? Is spam filtering available?

Will you need to point multiple domains at the website?

Some shared hosting companies allow only one domain to be pointed at a website. If
you intend to point several domains at the same website, check that this is allowed.

MAKING YOUR DECISION

There are thousands of hosting companies to choose from, and the consequences of
picking an unreliable company can be severe for a company whose website is a core
part of its business. How should you go about choosing a reliable host?

With hosting, a good recommendation is a positive sign, especially if the person
making the recommendation has used the host for several years. If you are working
with a Web developer, they will probably be able to suggest reliable providers they
have worked with—and probably suggest who to stay away from!

Researching hosting providers on Google is always worthwhile. If people are hav-
ing trouble with one, then they are probably posting about it in forums or on blogs. If
you notice a lot of bad experiences with a particular company, steer clear. Twitter is
another good source of information, particularly because people tend to tweet about
their problems in real time, even if they are not inclined to write a lengthy post about it
in a forum or on a blog.

As mentioned, getting very cheap hosting is possible, which is fine if the website
is personal or for a friend. But if the website is at all important to you or your client’s
business, then remember that you get what you pay for. If you want problems to be
fixed quickly, then paying a bit extra is worth it.

Find out how the provider deals with support. Some hosts offer only email support,
which might suffice, but your client might want a provider they can phone up when
their email or website goes down. If you know someone who uses the provider you are
considering, find out if they have ever had to contact support and what the experience
was like.

As also mentioned, server-side languages need to be kept up to date to ensure secu-
rity and compatibility, just like desktop computers. If a hosting provider is running a
very old version of a language, it could indicate that its servers are not up to date and,

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

63

thus, are vulnerable. You might also run into problems trying to install an open-source
script that relies on the current version of that programming language.

Many providers offer an uptime guarantee, usually as a percentage: a “100% uptime
guarantee” means that they guarantee your website will be up 100% of the time. These
guarantees tend not to mean a lot. The host will generally compensate you if your web-
site goes down for longer than the time it guarantees, but the onus is on you to catch it
and alert the host before it comes back up—not a lot of good if your website routinely
disappears at 2:00 am! Also, uptime guarantees tend to come into effect only if the
server itself is down, not if an external problem is affecting connectivity.

I don’t take much notice of uptime guarantees when choosing a host. I rely much
more on reports from users themselves about how good a host’s uptime and support
actually are.

Be aware that many hosting companies actually resell the services of larger ven-
dors. Anyone can buy a server from a large hosting provider and start reselling the
space on it, without much knowledge of hosting at all. If your website goes down, you
may find that your host cannot do anything about it other than open a ticket with the
larger company. You have ended up with a middleman between you and the people who
can actually solve your problem.

Figure 2.7. Memset, a hosting company, offers a range of virtual private
server packages.

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

64

TYPES OF HOSTING

For many years, shared hosting was the only cost-effective way to host all but the largest
websites. A website on a shared host would share a server with up to hundreds of other
websites. A certain amount of space would be allocated to you, and you would not be
able to configure or install software on the server.

The alternative to shared hosting has generally been to have a dedicated server,
where an entire physical computer runs your website. This is far more flexible, because
you can configure the server and the software hosted on it. But it is expensive, and
most websites do not need the space or resources available on a dedicated server.

In the last few years, a new type of hosting has emerged. The virtual private server
offers what appears to be a dedicated server, but in fact you are sharing one physical
server with a number of other virtual servers. The advantage of this to shared hosting
is that you can run whichever versions of the operating system and software you like;
thus, you can configure the server and host multiple websites on it.

Most companies that offer this type of hosting provide a control panel by default,
to make managing the server easy even for people who have never administered such
a system before. The two most common control panels are Plesk and cPanel (which in-
cludes Web Host Manager). These tools help you set up new websites on the server, and
they usually enable you to schedule updates to software on the server and to configure
what services are available to individual websites. In effect, with a virtual private
server, you become a Web host yourself.

Virtual private servers are also handy for setting up website demos for clients,
perhaps on a subdomain. For a designer whose policy is not to hand over files until the
client has paid, this set-up allows them to show the entire website to the client for ap-
proval before moving it onto the production server.

A virtual private server gives businesses the ultimate in flexibility. But if your
needs are simple, then they might be met by a shared hosting package that has ad-
equate specifications and reliable support and is kept up to date.

Cloud hosting is different from shared hosting or a virtual private server. With it,
the resources required by your website might be spread across a number of servers,
and you have the freedom to add resources or to scale back as required. This type of
hosting is useful for applications that require heavy resources at certain times and
light resources at others.

A ticket sales website is a good example; people will flood the website when tickets
for a popular event go on sale, but traffic will be low the rest of the time. With cloud

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

65

hosting, you can access extra capacity when you need it (paying for it, of course), sav-
ing on a lot of redundant capacity all year round.

Development Environments
This section is less for the developer working on a large team and more for the designer
or developer working on a redesign for the first time. We’ll share good practices for
redesigning and then going live with the redesign.

Whether you are replacing a live website or refactoring it with new elements or a
new UI, you need to do it without affecting users. Even if the changes are minor, never
update a live website without testing the changes. Something will always go wrong!

One method many people follow is to develop in a subfolder of the live website. This
is a bad idea, too, because the paths from the root folder will be incorrect; and when
you go live and move the website up a level to the root, your links and images could
break, because many server-side scripts locate them relative to the root. You would
then need to do a repair job—not the best start to a launch.

Instead, set up a local environment to develop in, including server-side scripts and
correct paths from the root. Then upload to a staging server, where you would test the
site on the Web, show it to the client, populate the content and get approval to go live.

If you are refactoring a live website or redesigning the UI but leaving the back end
more or less intact, then I suggest exporting the database and downloading all files (as
described in the section “Moving Your Website” later), so that your development and
staging versions of the website are set up exactly the same as the live website. If the
live database contains any confidential information about users, you will want to de-
lete it or use placeholders, not only to protect your users’ data but to avoid accidentally
emailing 10,000 users from your local system as you’re testing something!

THE STAGING SERVER

A local server is a set-up on your own machine or another computer in your office that
you use to develop the website. Once you are ready to show your work to the client, you
might need to move it somewhere else to make it accessible from outside your network;
that “somewhere” would be a staging server.

It could be as simple as a subdomain that points to a folder on your current host’s
server; this enables you to test the website in an environment that approximates the live
website, with all of the correct paths. If you build a lot of websites for clients and tend

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

66

to deploy to the same type of environment, you could take out a cheap virtual private
server and point a subdomain to it for each client’s website, enabling you to test easily.

If you do either of these things, you should secure the entire subdomain using
directory security, which forces visitors to enter a password in order to see the website.
This will prevent anyone from seeing your half-finished work and will prevent Google
from indexing it.

When deploying large content-managed websites for clients, we give them access
to a staging version of their website, where they can add all of their content and test
the website thoroughly. We then move the website, database and assets over to the live
server, a very quick process at that point, where all of their content goes live.

VERSION CONTROL

We couldn’t have a section on development environments without mentioning version
control. Even if you are working on your own, you should be using version control.
It really becomes useful, though, when you are working in a team. Team members
can modify files without worrying about overwriting each other’s work, and you can
always roll back to a previous version if something goes wrong.

If you have decided to refactor rather than redo a website, your first move should
be to import all of the files into some form of version control system. This way, you can
always roll back if one of your changes has an unintended effect on part of the system.

Figure 2.8. Beanstalk is a hosted service for Subversion and Git.

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

67

Even when you’re working alone, version control can save you from yourself—for exam-
ple, by keeping you from accidentally deleting a file or rashly modifying an application. I
use version control to port work between the multiple computers and locations that I work
from. At the end of every day, I commit my work. Should my daughter need to stay home
from school the next morning and I find myself working from home, I can retrieve my
files and pick up from the exact point where I left off the night before at the office.

There are a number of version control systems; you have probably heard of Subver-
sion and Git. The choice comes down mostly to personal preference. While you can
configure a server to do the job, you can get started quickly by using a hosted service,
such as GitHub or Beanstalk. Beanstalk happens to have an excellent beginners’ guide
to version control on its website.4

Moving Your Website
Having to move a website from one host to another worries a lot of people, particularly
if the website is popular. But if you follow the steps below, you will find that doing it
with no visible downtime to visitors is possible. The process is the same for moving a
website from the staging server to a live server.

The instructions below are for deploying a website to a regular shared hosting envi-
ronment, with SFTP access. If your environment is more complex than that, then you
probably already have a developer to help you work through it.

SET UP THE NEW HOSTING ENVIRONMENT

First, you need to set up the new hosting environment. Check that it has all of the ca-
pabilities you require, including support for the server-side language and database of
your choice.

TRANSFER THE FILES TO THE NEW HOST

Use SFTP to upload the website’s files to the new host. The new host might provide a
temporary domain for you to test the website. If not, I usually point a subdomain of
mine to the server temporarily while I check that everything is working properly.

4 Beanstalk, “An Introduction to Version Control,” smashed.by/version-control

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

68

Avoid previewing websites that have a tilde (~) or your user name in the domain—oth-
erwise, paths from the root will be incorrect.

TRANSFER THE DATABASE TO THE NEW HOST

Unless you are working on Microsoft-based applications, you will most likely be using
MySQL. MySQL is the database used for most open-source applications and is a com-
mon choice among developers who work with PHP, Python and Ruby on Rails.

The first thing to know when working with a database such as MySQL is that there
is no database file to upload or download. The database is held within the MySQL
server; to get at the data, you need to connect to the server. Many hosted servers come
installed with PHPMyAdmin, a Web-based application that enables you to manage
the database in a browser. You can also download and install PHPMyAdmin yourself,
which makes for a handy way to move a MySQL database between the local, staging
and live servers.

SET UP THE MAILBOXES

If your email will also be hosted on the new domain, then set up the mail accounts so
that they are ready once the domain transfers over.

CHANGE NAMESERVERS, OR REPOINT THE DOMAIN A RECORD

If you are changing the DNS of the domain to your new host, you should now be able to
change the nameservers. If your DNS is hosted elsewhere and you just want to change
where the domain points to, then you would just repoint the A record. It can take some
time for the domain to resolve to the new host everywhere on the Internet, so continue
to check mail through your old host for a day or so to make sure you don’t lose any. If
the old host allows users to check mail in a Web interface without going to the domain
itself, you can do it that way, until mail stops coming through there.

MOVING A LIVE DATABASE-DRIVEN WEBSITE

The problem with moving a live database-driven website is the time it takes for the
DNS to propagate across the Internet and for the caching servers to update. At some
point, some visitors will be directed to the old host and some to the new. If your data-
base is meant only for internal content management, and visitors do not add to it, then
you simply need to let your content creators know not to change any content until they

Selecting a Platform: Technical Considerations for Your Redesign CHAPTER 02

69

are sure they are accessing the website through the new host. In this situation—and
after testing the website with a copy of the database—I would move over a new copy of
the database just before switching nameservers, to make sure I’ve captured the most
up-to-date content. If visitors are able to add data to the database (for example, one
that captures orders for an online store), then you will need to avoid losing any data in
the transfer. The safest way to do this is to take the website offline and put up a holding
page while you perform the transfer.

If you cannot do this, there are a couple of workarounds. First, do the transfer as
described above, and then once you are sure the DNS has fully switched, compare the
two databases, and sync any records from the old to the new. If the website gets fairly
low traffic and you expect just a couple of orders or comments during that time, this
should work fine. Alternatively, you could move the database first. As long as the new
hosting space can be set up to allow an external website to connect to the database, you
can move the database and then connect both the old and new hosted websites to the
database in the new environment. If you are in this situation, speak to your hosting
provider (and your developer if you have one) to work out the best method.

Where to Go From Here?
We’ve just skimmed the surface of the technical considerations to make when rede-
signing a website or embarking on a new stage of development. Not everything in this
chapter will have been of use to you, but by thinking through the technical decisions
you need to make, even if you are not the one who will be implementing them, you
avoid rushing down a wrong and expensive path!

To echo Paul Boag’s words from the previous chapter, do your homework before
diving into any solution. There are many ways to achieve whatever it is you want to
do, and the CMS or framework that someone is trying to sell you might not be best for
your project. By always returning to your research, business requirements, available
resources and constraints, you should be able to make wise decisions. A solution that
has been well thought out should enable the website to grow and develop.

If you have to completely rebuild a website, treat this as the last time you will be
able to do this, and pick a solution that will take the website and the business forward.

CHAPTER 02 Selecting a Platform: Technical Considerations for Your Redesign

70

About the Author
Rachel Andrew is a Web developer with skills in both server-side lan-
guages and front-end development. She has written numerous books,
including The CSS Anthology: 101 Essential Tips, Tricks & Hacks, the
fourth edition of which is to be published in March 2012. Rachel is the
founder and managing director of edgeofmyseat.com, and she co-
created Perch, the really little content management system.

Rachel has a personal website at rachelandrew.co.uk, where
she writes about many things, including the Web and running a busi-
ness, and can be found on Twitter @rachelandrew.

About the Reviewer
Harley (1983) is a Canadian citizen, born in Montreal, where he
pursued his degree in economy. He earned an MBA in law from
the University of Ottawa, home to the city where he lives nowa-
days. He describes the city as having a beautiful small-town feel
with big-town fun, and very cold. Apart from the Internet, he loves
skiing, boxing, amateur sushi rolling, DJ’ing and the color red.

Harley started his first company at the age of 17 and has been
building stuff ever since. Today, he is the Chief Platform Officer at
Shopify, the Web’s leading e-commerce platform. Throughout his
career, Harley has learned to go after things he is passionate about
and practice them everyday. His personal advice to the readers is
#Hustle&Hack.

About the Reviewer
Ryan Carson is an American living in England and a father.
Having graduated from Colorado State University with a degree
in computer science, he moved to the UK in 2000. He loves Web
tech, coffee and movies. (Is it wrong to have seen The Matrix
seven times in the cinema?) He’s passionate about connecting and
encouraging people, which is why he’s passionate about running
events for the Web community. He has successfully built and sold
two businesses and is now working on his third, Treehouse.

Jumping Into HTML5

Written by Ben Schwarz
Reviewed by Russ Weakley

Jumping Into HTML5 CHAPTER 03

CHAPTER 03 Jumping Into HTML5

72

f you asked me to explain HTML5 to you, I would probably start by explain-
ing that your role as a Web developer has changed from the days of old. I would
expect you to be an expert in HTML (the markup language), CSS (and all of its

permutations across browsers), JavaScript (and the subtle differences between its APIs
in browsers). And then I would roll on to design theory, animation, 3-D, server-side
technologies and sound engineering.

After a moment of silence, you would probably wonder why so many technologies
are brought under the umbrella of HTML and perhaps wonder why you decided to
build for the Web in the first place.

HTML5 (as a specification) is broken into many pieces, covering distinct areas of
specialization, so try not to fret. Getting a solid, basic understanding of HTML, CSS and
JavaScript will enable you to continue on your own and develop specialized skills that
others do not possess. In essence, you will become invaluable to your team or company
by focusing on “non-core” technology.

Best practices have not been established for many of these fancy new features, so if
you want to learn something cool (and maybe become famous in the process), then it is
time to download a beta browser and start experimenting.

Most browser vendors release beta versions of their browsers to allow developers
to experiment with cutting-edge features. The “big five” all have betas that you can
download:

•	Google Chrome has three not-ready-for-prime-time versions: “Beta” (for 		
	 developers), “Dev channel” (for developers who want to use features that have 	
	 been released within a week) and “Canary” (a nightly release, totally untested).

You can get all of them from smashed.by/chromedev.

•	Apple’s Safari browser has one version: WebKit (webkit.org).

•	Opera has a “Next” version: smashed.by/operadev.

•	Firefox has a nightly edition (smashed.by/ffndev) and a pre-beta build called 	
	 Aurora (smashed.by/ffadev).

•	Last but certainly not least, Microsoft releases new builds of IE manually 		
	 (i.e. not nightly): smashed.by/iedev.

I

Jumping Into HTML5 CHAPTER 03

73

Browser support for new features is rolled out in a modular fashion. And with brows-
er vendors (notably, Google and Mozilla) now releasing on a six- to eight-week cycle,
version numbers are clearly less important than they used to be. One could liken
this to the way developers make changes to websites. A website has a version, but it
is unimportant to the end user. So, as a Web developer, concern yourself with which
features to use to best tell your story and to translate your designs into living, breath-
ing products.

As Web technologies evolve, we have to be constantly aware of the past. Thank-
fully, this goal is shared by both of HTML’s standards bodies, so you will be relieved to
know that HTML5 will not alienate your user base or make your job harder. Which-
ever DOCTYPE you use, the user’s browser will render the website as best it can. If you
use a new HTML5 feature with an old DOCTYPE, it will still render correctly.

In this chapter, we will not talk about WebGL, audio and video, device APIs, Web
sockets or SVG. I will leave them for you to discover because each warrants its own
chapter. Instead, I will give you a tour of the ground floor. We will cover everything
that is important to get right before moving on to advanced topics.

Where We’ve Come From, Where We’re Going
HTML5 is a lot of things. And since the last major “version” of HTML, we have come
a long way. The Web Hypertext Application Technology Working Group (WHATWG)
refers to it as “HTML: The Living Standard” (it drops the 5). That is, HTML is defined
as version-less technology. And as mentioned, browser vendors cherry-pick which
features to implement, which is why browsers vary in their support.

WHATWG, W3C AND “THE COMPANIES”

You have probably heard of the World Wide Web Consortium (W3C). More recently
(perhaps as recently as the last few paragraphs), you have seen reference to WHATWG.
WHATWG was formed by representatives of Apple, Mozilla and Opera, who were con-
cerned about the lack of development of HTML by the W3C and thus decided to form
their own group.

Much of the work of WHATWG is shared by the W3C, and the license for the speci-
fication states that, “You are granted a license to use, reproduce and create derivative
works of this document.”

CHAPTER 03 Jumping Into HTML5

74

The W3C indeed shares the work. It does not create standards, but rather makes recom-
mendations. And while the W3C is funded by all of the big computing and browser
companies, it is dedicated to open standards that do not put any one company at an
advantage.

So, as a Web developer, you can be sure that all new developments in HTML (par-
ticularly with regard to Web applications) are developed with considerable financial
backing from browser implementors (Webkit, Gecko and Opera) and are approved by
the W3C over time.

This odd relationship has led to a situation in which technology that comes with
licensing fees or that is strictly proprietary is not looked upon favorably by many. The
browser race is as competitive as when it began.

KNOWING WHAT FEATURES TO USE

A modern Web developer has to understand the audience they are serving, be able to
choose the right technology for the job, and know what the impact will be if a feature is
not supported by the browsers used by their audience.

Figure 3.1. Caniuse (smashed.by/ciu) illustrates when you can, or should use a HTML5
feature.

Jumping Into HTML5 CHAPTER 03

75

Only wizards magically know whether a given feature is widely supported. If you’re
not one of them, you can be thankful for When Can I Use.1 The site lists what features
are supported in current versions of all the major desktop and mobile browsers and
what features will be in future versions. It is searchable, and it even hooks up to Google
Analytics to show you what browsers your audience is using. Now, let’s dive in and look
at HTML, from the ground floor.

THE DOCTYPE

Think back as far as you can remember. Did you ever remember the full DOCTYPE
for HTML 4.01 (or for XHTML, for that matter)? I didn’t think so. Let me show you the
HTML5 DOCTYPE:

	

<!doctype html>

That’s it! It can be in uppercase or lowercase letters, and it is all you need to put the
browser in standards-compliance mode. It makes you wonder why we had to copy and
paste the top of our HTML documents all the time.

Of course, we have been littering our HTML with a bunch of other important tags
for years now. Let’s look at what else has been simplified.

META CHARACTER SET

<meta http-equiv="Content-Type" content="text/html;

charset=utf-8">

Argh, what a mess! This meta tag is rather important and should be added before the
title tag to ensure that the browser sets the character encoding correctly. Thankfully, it
has been simplified to something memorable:

<meta charset="utf-8">

Some XML parsers have trouble with tags that are not self-closing, which is why some
Web developers choose to use self-closing tags (i.e. XHTML style). It is entirely up to
you, but we suggest leaving the tags open.

1 smashed.by/wcai

CHAPTER 03 Jumping Into HTML5

76

STYLE SHEET LINK AND SCRIPT TAGS

The type attribute can be omitted from both the <link rel="stylesheet"

href="layout.css"> and script tags.
In the old days, the type attribute could be used in the script tag if you wanted to

use VBScript instead of JavaScript, but these days it is not at all required.
Being able to omit these details that made our documents longer and harder to write

feels great. But we have just scratched the surface. Let’s add a little something to the
script tag.

ASYNCHRONOUS SCRIPT DOWNLOADS

First, a word on how the browser downloads files. After the browser downloads and
parses HTML, it collects a list of assets (i.e. images, CSS, JavaScripts, etc.) and prior-
itizes them for downloading in order of appearance.

In the past, we connected to the Internet through dial-up, which did not handle
multiple concurrent connections very well. Now, because bandwidths vary drastically
(especially with mobile devices in the picture), browsers are limited to downloading
only a few assets at a time per top-level domain.

This is why some developers use content delivery networks or assign assets to a
subdomain (such as assets.example.com); using different top-level domains gives the
developer more download “slots” for scripts, style sheets, images and iframes. Be aware
that this comes with a performance hit!

When browsers download JavaScript, they do so one script at a time, allowing the
browser to parse and pre-run magical optimizations. Now, rather than leaving the
whole experience to chance, we are able to use script loaders (such as LABjs, Yepnope,
RequireJS and many others) to load multiple scripts at once, set up dependencies and
determine whether a particular script file is required at all.

Improving the performance of pages where possible makes sense. Amazon claims
that an increase of 100 milliseconds in page-loading speed leads to a decrease in sales of
1%.2 With that in mind, let’s look at my favorite of script loaders, Yepnope.3

Yepnope can be used to conditionally load scripts based on tests. Simply put, you
can request a JavaScript only if the browser needs it.

2 smashed.by/amzspeed
3 smashed.by/yepnope

Jumping Into HTML5 CHAPTER 03

77

 For example:

yepnope([

 {

 test: window.JSON,

 nope: '/javascripts/json2.js'

 }

])

This clever bit of JavaScript checks whether the browser has a native JSON parser, and
for those that do not (which is IE 6 and 7), it loads /javascripts/json2.js, which is a
JSON polyfill.

Now that we have (briefly) covered the basics of script loaders and talked about
loading scripts in parallel, it is time to look at two new attributes in the script tag.
First up, async:

<script src="/javascripts/application.js" async></script>

The async tag is a boolean attribute, which means that its mere presence in the browser
indicates true, or “Yes, please use this feature.” It tells the browser to execute applica-

tion.js as soon as it is available. Scripts that are loaded using async are executed as
soon as they are downloaded—that is, not in the order of their appearance in the HTML.

Figure 3.2. Yepnope: a conditional script loader.

CODE

CHAPTER 03 Jumping Into HTML5

78

GETTING THE FILES TO THE CLIENT FASTER

It is worth mentioning that the biggest performance gain we get is in reducing the size
of the scripts as a whole. The first way to reduce the size of scripts (as well as of style
sheets and HTML files) is to serve them using gzip. To add gzip support to your website,
check out the HTML5 Boilerplate Webserver configuration repository on GitHub.4

If you are not sure how your website is being served, it is time to familiarize
yourself with the Web developer toolbar. In Webkit-based browsers (i.e. Safari and
Chrome), you can open the Web developer toolbar by pressing Command + Option + I on
a Mac and Control + Shift + I in Windows.

Under the “Network” tab, you will see a list of files that were loaded for the current
page. You can inspect the request and the response headers for each file listed.

The second tip for improving your website’s performance (actually, the best way to im-
prove performance when it comes to scripts) is to concatenate and compress your files.
I recommend the UglifyJS compiler.5

Clever people such as Steve Souders have devoted themselves to understanding how
all browsers download, parse and display websites. If you are interested in producing
better-performing websites and applications, follow Steve’s work.

4 smashed.by/configs	
5 smashed.by/uglify

Figure 3.3. Safari’s developer toolbar that shows the network activity on Yepnope.

Jumping Into HTML5 CHAPTER 03

79

NEW SEMANTIC TAGS AND WHEN TO USE THEM

Because we are talking about HTML5, all of this talk of performance and scripting
probably feels a bit foreign. Let’s look at the new semantic tags to work out when to use
them.

Before using any new tags, be sure to use what is known as the HTML5 Shiv. The
script is essential because without it, Internet Explorer 6, 7 and 8 will ignore any
unknown styles (i.e. the new HTML5 tags, which were unknown when those versions
were built). You can get a copy of HTML5 Shiv from Google Code, where the project is
hosted.6

You can also get HTML5 Shiv by using Modernizr.7 We won’t cover Modernizr in
this chapter, but do check it out. I have been using it on every website that I have built
in the least two years.

RESETTING DEFAULT HTML STYLES

Browsers render unstyled elements slightly differently; so, to normalize the code base
for a better cross-browser development and maintenance, the second thing you will
want to do is use a CSS reset.

Use one of the newer CSS resets, because the older ones do not style HTML5 ele-
ments. I strongly recommend Normalize.css8 by Nicolas Gallagher9 and Jonathan Neal.10

Many of the older reset scripts (Eric Meyer’s classic Reset CSS, for instance) are some-
what heavy-handed: they reset every element, and some of their changes are debatable,

6 smashed.by/steve
7 smashed.by/modernizr
8 smashed.by/normalize	
9 smashed.by/nicolas
10 smashed.by/jon	

Figure 3.4. This file was returned to the browser using gzip encoding.

CHAPTER 03 Jumping Into HTML5

80

such as setting strong to be unbolded by default. Normalize.css resets elements more
gracefully, and it handles a few browser quirks. It gives you as close to an even playing
field as you have ever had in a browser. Jon Neal and Nicolas Gallagher have carefully
explained everything the script does. Read the heavily commented code—it’s fantastic!

Rebuilding Your Website
Having reached this point, you’re probably thinking, “OK, it’s time to start writing the
website using the latest and greatest tags.” When the new semantic tags were estab-
lished, developers had to do some work in analyzing what classes and IDs they were
applying to their websites. What they discovered really wasn’t astounding at all: they
were all using the same naming conventions (or slight permutations thereof). So, the
names for the new tags will probably fit what we are already doing.

SECTION

A section tag could be used to break up distinct parts of the home page. Perhaps your
blog consists of personal information about you, presentations that you’ve given and
regular posts. You could probably break these up into section elements:

<section class="articles"></section>

<section class="about-me"></section>

<section class="presentations"></section>

Each of these parts could probably take its own header, so we could regard them all as
reasonably important, thus justifying our decision to make them sections. If you were
writing a book like the one you’re holding in your hands right now, you might make
each chapter its own section, and then make each section within a chapter a nested
section. As with everything related to semantics on the Web, don’t get hung up on
the details. Choose an element based on the best information you have at the time and
move on. Semantics are subjective—don’t sweat the small stuff!

ARTICLE

When diving into HTML5, you might have wondered about the difference between
section and article. Perhaps you guessed that an article tag is used primarily for
blogs and online news. You would not have been far from the truth.

CODE

Jumping Into HTML5 CHAPTER 03

81

If you remember one thing about the article tag, remember this rule of thumb: if the
piece of content would still make sense outside of its current context (that is, if the user
could not see any of the page surrounding that piece of content), then it is probably an
article. Hence, blogs and online news.

I use article for collections of content—say, a list of presentations that I have given
in the past, perhaps with synopses:

<section class="presentations">

 <header>

 <h1>My Presentations</h1>

 </header>

 <article>

 <h2>An Introduction to HTML5</h2>

 <p>A four-hour workshop that I ran around Australia.</p>

 </article>

 <article>

 <h2>Compass and SASS</h2>

 <p>Use a well-written library of CSS so that you can focus

on the important things.</p>

 </article>

</section>

Eagle-eyed readers might ask, “That looks like a list! Why not use ul?” You would not
be wrong; it absolutely could be a list element. But article indicates that, while these
elements are similar, they are not related to one another. We could argue about this for
hours; in the end, you will have to make up your own mind.

HEADER

Have you ever used a class or ID like masthead, banner or even top for the header sec-
tion of a website? The header tag can be used for much more than just the head of the
website. It can be used within an article or section, but it is entirely optional. Just
use it when you need a block-level element to mark off space on the page for clarity. For
example, I often keep titles and meta information in the head of a blog post.

CODE

CHAPTER 03 Jumping Into HTML5

82

FOOTER

The footer tag is just like header. You can use it within article or section or globally
within body.

ASIDE

The aside tag can be used at the top level or within article. Its contents can be regard-
ed as useful but not essential information.

For the mobile version of your website, for example, you could choose to hide aside
elements. However you treat it, the tag forces you to make some decisions about your
content. A blog post could be set up as follows:

<article>

 <header>

 <h1>All About Tractors</h1>

 <time datetime="2012-01-01">1 January 2012</time>

 </header>

 <aside>

 <p>Written entirely by Bruce Lawson</p>

 </aside>

 <!-- The body of the post goes here. -->

</article>

TIME

Did you spot the new tag in the last code snippet? The time tag is simple: use it to dis-
play the time. You can provide a machine-readable version, too.

<article>

 <p>Published on <time datetime="1984-04-03"

	 pubdate>3 April 1984</time></p>

</article>

The pubdate attribute can be used to indicate the initial publication date of an article. The
specification states that the pubdate attribute should be used only once for an article.

CODE

CODE

Jumping Into HTML5 CHAPTER 03

83

NAVIGATION

The nav element is, obviously, for the navigation of a website. You can nest nav tags to
create a drop-down menu. The tag would not be suitable for that list of presentations I
referred to earlier when talking about the article tag. Reserve nav for the structural
navigation of the website itself. For example:

<nav>

 <ul role="navigation">

 Products

 Contact and Locations

 About Our Company

</nav> 	

(Wondering what the role attribute is for? You will have to keep reading!)

FIGURE AND FIGURE CAPTION

You probably add a lot images to your pages. Have you ever considered the best way to
apply captions to those images? Wouldn’t it be nice to be able to wrap a caption tidily
with its image? Well, that is what the figure tag is for.

<figure>

 <img src="whisky.png" alt="A glass of whisky,

 	 with a side of water in a small jug.">

 <figcaption>A glass of whisky, with a side of 			

	 water in a small jug.</figcaption>

</figure>

It doesn’t end there. You can also use the figure tag for video, svg and pretty much
anything that is visual and could take a caption.

DIV

With all of these new tags, you would think that div was a thing of the past. It is not.
Developers have been using the humble div tag for everything under the sun for years
now, to the point of some contracting the debilitating disease of “divitus.”

CODE

CODE

CHAPTER 03 Jumping Into HTML5

84

A div is a “division” and sometimes there is no better tag with which to describe a piece
of content. Perhaps all you need is a box in which to add some styles. It happens. I don’t
blame you. Semantics are tricky. If you really cannot describe a piece of content using
any of the HTML tags mentioned above, then use a div and don’t feel guilty about it.

A FEW WORDS ON SEMANTIC OUTLINING

Now that we have some new sectioning elements (i.e. section and article), the plain
old document outline that we have been used to has changed a bit. Sectioning elements
can be thought of almost as documents of their own. In other words, the heading levels
h1 through h6 can be used within them.

But hold on! This means you could encounter something like the following:

<body>

 <header role="banner">

 <h1>Full Frame: A Blog About Cycling</h1>

 </header>

 <article>

 <h1>Early Morning Over Black Spur</h1>

 ...

 </article>

</body>

Multiple h1s in the same document? That’s crazy! Instead, I use headings to show the
structure within a given section:

<body>

 <header role="banner">

 <h1>Full Frame: A Blog About Photography</h1>

 </header>

 <article>

 <h2>Early Morning Over Black Spur</h2>

 ...

 </article>

 <section>

 <h2>Buy Our Book!</h2>

CODE

CODE

Jumping Into HTML5 CHAPTER 03

85

 <section>

 <h3>Print</h3>

 ...

 <button>Purchase: $90</button>

 </section>

 <section>

 <h3>Electronic: PDF or eBook</h3>

 ...

 <button>Purchase: $15</button>

 </section>

 </section>

</body>

Not only does this make styling the headings easier, but it just feels much better: less
confusing, and no swimming against the current.

Before having tags such as section and article at our disposal, we really only had
h1 to h6 to describe the depth or hierarchy of a website. Now, we can describe infinite
levels of depth and can represent each level of content accurately.

If after all this, you are still not sure which element to use, check out the fabulous
flowchart on HTML5 sectioning elements11 that was developed by Oli Studholme and
Piotr Petrus. Print it out, stick it on your wall, and you will always know which ele-
ments to use. Maybe—no promises. As always, you will probably want to validate your
HTML to keep it in check. I prefer Validator.nu.12

WORKING WITH WAI-ARIA ROLES FROM THE GROUND FLOOR

Roles for WAI-ARIA (short for Web Accessibility Initiative: Accessible Rich Internet
Applications) have always been a part of modern HTML technology—so much that
perhaps most developers glaze over as soon as they’re mentioned.

The roles are designed to make websites and applications more accessible to users
with screen readers. Any professional accessibility expert (there really are not enough
of them!) would attest to the importance of WAI-ARIA; and for the most part, they are
largely ignored, too.

11 smashed.by/h5doc	

12 smashed.by/vldnu	

CHAPTER 03 Jumping Into HTML5

86

Companies may talk a lot about how important accessibility is; whether they are
conducting studies on it or designing for it is a different story. But your job as a website
builder is to enable everyone to consume your content.

For blind and low-vision users, WAI-ARIA roles describe the context and purpose of
the information laid out for them. A section of a page is not just visually different—it is
contextually different, and screen-reading software can explain that difference to the
user, enabling the user to interact with that section without missing a beat.

I am by no means an accessibility expert, but I will try to give you the best no-non-
sense rationale for why the importance of WAI-ARIA goes far beyond accessibility. If
you have ever used any of the sectioning elements described in this chapter, then you
have probably encountered something like the following:

<body>

 <header>

 <h1>Tractors: An Interactive Guide</h1>

 </header>

 <article>

 <header>

 <h2>Tractor Maintenance</h2>

 </header>

 </article>

</body>

Did you spot it? The document has two header tags, both legitimately used. The prob-
lem lies in the CSS:

header {

 margin: 0 2em;

}

This element selector targets both headers. We could use a descendent selector (i.e.
body > header), but that feels a little heavy-handed, not to mention that the top-level
header might be the masthead for the entire website. We can use a WAI-ARIA role to
our advantage here simply by adding role="banner" to the HTML:

CODE

Jumping Into HTML5 CHAPTER 03

87

<body>

 <header role="banner">

 <h1>Tractors: An Interactive Guide</h1>

 </header>

 <article>

 <header>

 <h2>Tractor Maintenance</h2>

 </header>

 </article>

</body>

This role attribute states that <header role="banner"> is a “global” element that con-
tains content that applies to the entire website, rather than just the current page. This
is a good fit and, thanks to a simple attribute selector, not too difficult to style:

header[role="banner"] {

 margin: 0 2em;

}

Because the header and footer tags can be used in multiple places, we seem to be left
without a tag especially for the main content. Thankfully again, an ARIA role is ripe for
the picking.

By adding role="main" to article (thus, <article role="main">), we can easily
specify that the main content for the current document is contained within article.
(You might have noticed in the snippets above that h1 is used in the top (root-level)
header, and h2 is used in the nested header. Combined, this best describes the hierar-
chy of the document.)

You are probably starting to appreciate the gracefulness of this approach. The de-
scriptions of content are becoming more detailed, and we are able to apply styles to our
new tags with minimal effort. A third ARIA role is contentinfo, which is often used
for copyright notices, privacy statements and general information about the current
page or website. (Some people would call this “meta information.”)

Finally, a fourth highly useful ARIA role to be aware of is navigation, which easily
distinguishes a navigational section from a regular old list of links. Adding ARIA roles
is a good way to make the content and context of your existing website more descrip-
tive. Then, when you decide to overhaul the website, you can use the newer tags.

CODE

CHAPTER 03 Jumping Into HTML5

88

Hopefully, this short introduction has helped you see the benefits that semantic con-
tent brings to everyone. ARIA roles are an excellent example of this.

CLIENT-SIDE STORAGE

Now for an entirely new subject: HTML5 client-side storage. To date, we have had few
options for storing data on the client’s side. The most common has been the humble
cookie-based session; but cookies are beset by a host of small problems, the more both-
ersome of which are these:

•	The data you store in the session is transported back and forth between client 	
	 and server with every request,

•	The data you store has a limit of 4 KB;

•	All cookies are timed to expire.

Cookies are not all gloom and doom, though. A cookie is what stores a user’s data for
logging into a website, and it helps the server to identify who the user is. It is clear,
then, that we need some other options just for storing data. Thankfully, we have a fan-
tastic solution in local and session storage. What are they? I’m glad you asked.

With localStorage and sessionStorage, we have two JavaScript APIs for stor-
ing strings of text to the browser. The sessionStorage API is purged when the user’s
session has ended (i.e. the tab or browser is closed), while localStorage sticks around
until the developer (through JavaScript) or the user (through their browser settings)
decides to remove it. The APIs are virtually identical—the only difference being the
length of time of the storage.

Open your developer toolbar in a modern browser (i.e. one released within the last
three years). Type in localStorage.setItem("name", "Ben"). In Webkit-based brows-
ers, you will see my name stored under the “Resources” tab (you will have to expand
“Local Storage” to see it). You have just stored your first item in localStorage.

Now, let’s retrieve what we’ve stored by using localStorage.getItem("name"). You
should see “Ben” printed neatly in the console. Finally, to clean up after yourself, use
either localStorage.deleteItem("name") to delete my name or localStorage.clear()
to remove everything in localStorage. When the user calls localStorage.clear(),
they are only clearing it for the current domain. So, if the user stores some data on the
website hosted at example.com and then switches tabs to google.com, they would see
that they cannot access the data that they stored in the example.com tab.

Jumping Into HTML5 CHAPTER 03

89

The localStorage API is highly useful. Say you are building a Twitter client which you
want to be able to do the following things:

•	Use in your desktop browser and on your mobile phone;

•	When online, view tweets from your last online session;

•	When offline, queue tweets to be posted later.

With localStorage, this is all possible. The snippet below illustrates this. (It is purely
hypothetical, so don’t sweat the small stuff.)

postTweet = function(tweetText) {

 // Check if we’re online

 if(navigator.onLine) {

 // Hey, we’re online! Send that tweet, baby!

 } else {

 // Hm, we aren’t online right now. Better store it for an-

other day.

 localStorage.setItem("queue-" + +new Date(), tweetText)

 }

}

That wasn’t hard, was it? To see all of the items in localStorage, we can iterate over
them, just like an array:

Figure 3.6. The local storage object explorer in Safari.

CODE

CHAPTER 03 Jumping Into HTML5

90

for (item in localStorage) { console.debug(item) }

This will print out a list of all of the keys of items you have stored. Say you want to dis-
play your queued tweet? Here is how you would do that:

for (item in localStorage) { console.debug(localStorage[item]) }

The localStorage and sessionStorage API can be found in all modern browsers (in-
cluding IE 8+), so there is no reason why you couldn’t start building your own applica-
tions or just start experimenting with it in client-side applications.

In Summary
Before you replace all of the markup in your current website, take some time to study
ARIA roles and browser performance and to generally learn how to structure code. Using
a new tag will make only you feel good, whereas using ARIA roles will make a lot of people
feel good. It sounds almost poetic, but it really is far simpler than that: it’s your job.

To start using the new technology, don’t feel like you have to use the new minimal
DOCTYPE. Browsers will use whatever features they can when displaying your web-
site. There is no “HTML5 mode,” so you might as well dive in!

This is just a taste of the platform we call HTML5. We could go on for days about it,
but instead, we will leave you with a few references to bookmark:

•	HTML5 Please, html5please.us

Want to know when you need to patch older browsers? Or when a super-new 	
tag isn’t quite ready for prime time? This website will give you the grounding to 	
really turn it up a notch.

•	HTML5: A Technical Specification for Web Developers, smashed.by/whatwg

This guide is an abbreviated version of the full HTML5 specification. It removes all
of those obtuse details that browser vendors need to build browsers. It is search-
able, works on mobile devices (even offline), and was created by yours truly.

•	HTML5 Rocks, html5rocks.com

This website is maintained by staff at Google, and nearly every article posted is 	
not only enlightening, but mind-blowing.

Jumping Into HTML5 CHAPTER 03

91

•	HTML5 Doctor, html5doctor.com 							
	 Aside from being written by a bunch of stand-up chaps, HTML5 Doctor has 		
	 penetrated to depths that no others would dare. An excellent resource.

I’m an excellent name-dropper; throughout this chapter I have been dropping names
like nobody’s business. But it has not been gratuitous. The people and websites men-
tioned are leaders in the industry. I highly suggest you follow them on Twitter or Goog-
le+, subscribe to their blogs or buy them a beer. Nothing will teach you more about the
Web than helping to build a strong online community. I’ll leave you to start rebuilding
your website. Good luck!

About the Author
Ben Schwarz funds his love of good food (at home) and sake (in bars)
by designing sophisticated Web applications using standards-based
technology. More than anything else, he is driven by a maniacal de-
sire to produce not only elegant code, but also beautiful software in
the hands of its users. He’s also a committee member of Ruby Aus-
tralia and joined the W3C CSS Working Group as an “invited expert”
in December 2011.

About the Reviewer
Russ Weakley (1965) was born in Sydney, Australia, and lives in
Chatswood West, a leafy suburb of northern Sydney. He has a di-
ploma in visual arts and graphic design and works on user-focused
Web design, markup and code, project management, user experi-
ence, accessibility and training. He has been working on the Web
since 1995.

Russ has two young kids and, therefore, no time for hobbies. He
used to have three dogs, but since all died, he doesn’t have any.
Russ’ favorite color is black. An important lesson he’s learned dur-
ing his career is that “This too shall pass”—it applies to everything
in life, including business. His personal message to readers is “Get
busy!”

Restyle, Recode,
Reimagine With CSS3
Written by David Storey and Lea Verou
Reviewed by Tab Atkins

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

94

y now, we’ve all gotten the message that Web standards are the funda-
mental baseline for our work and that semantic HTML is the best thing since
sliced bread. We all build table-less layouts and struggle for semantic correct-

ness. However, many of us still code according to the methods popularized during the
first years when Web standards became popular among authors—some of them include
verbose markup and nasty CSS workarounds, to name just a few.

While these approaches aren’t wrong per se, they are no longer optimal, and they
sometimes hold us back from becoming better, more efficient designers.

In the previous chapter we learned how to recode markup to be more lean, semantic
and modern. In this chapter, we will learn how to recode CSS to reduce the number of
images, HTTP requests, presentational JavaScript and wrapper divs, while making the
style more flexible and maintainable.

WEBSITES DO NOT HAVE TO LOOK THE SAME IN EVERY BROWSER

Before we continue, there is one preconception that we finally have to shed and help
our friends and colleagues get rid of as well. Although clients and old-school design-
ers often disagree with this, we all need to understand and accept that websites do not
have to look the same in every browser. The truth is that only you, your client and your
colleagues will check a website in multiple browsers. Your visitors mostly use one, and
you’re lucky if they actually know what a browser is.

If a website is not broken in their browser, they won’t fire up four different brows-
ers to compare—they will just keep using the one they have. If you replace some of
your verbose hacks with CSS3, some visitors will get the eye candy, some won’t. And
that’s OK. Not a single person will complain that a website is broken because it doesn’t
have rounded corners, shadows or gradients. As long as you take care to provide proper
fallbacks, no one will think that anything is wrong.

PROVIDING FALLBACKS

Taking advantage of CSS’ graceful error handling and the cascade is the easiest way to
provide fallbacks. The main idea is simple: in CSS, browsers ignore things they don’t
understand. So, if they don’t understand a property or a value, they will ignore the
entire declaration. If they don’t understand a selector, they will ignore the entire rule.
If they don’t understand an @ rule, they will ignore everything inside it.

Take this simple CSS code:

B

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

95

a {

 color: black;

 color: super-cool-new-css-color;

 super-cool-new-css-property: awesomesauce;

}

a:hawt-new-pseudoclass(awesomeness) {

 color: hotpink;

}

In browsers that support :hawt-new-pseudoclass, the color of the links that match it
will be hotpink. In all other cases, the color will be determined by the first rule. In those
cases, if super-cool-new-css-color is a supported color, then links will have that color.
Otherwise, they’ll be black. And if super-cool-new-css-property is supported, it will
apply to all links; otherwise, it will be ignored and will cause no problems. Sometimes
(rarely), this method won’t help. For example, when new layout methods are not support-
ed, you will need to define an entirely different layout using many properties that won’t
get overridden by the new ones. In these cases, feature detection can help. Modernizr1
by Faruk Ateş and Paul Irish is one of the most used feature-detection libraries. It adds
classes to the root element, which you can then use in your CSS to branch accordingly:

.no-flexbox section {

 /* old-style layout goes here */

}

.flexbox section {

 /* cool new flexbox stuff go here */

}

When downloading the library, you can even customize it and “generate” a light ver-
sion to detect only the features you need, thus keeping the file’s size minimal.

HOW TO READ THIS CHAPTER

Many CSS3 properties featured in this chapter are still vendor prefixed. As soon as a
feature becomes a standard and is widely supported in modern browsers, the prefixes
can be dropped. This means that in order to use them today, you will likely need to
precede the property’s name with one or more of the following prefixes:

1 smashed.by/modernizr

CODE

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

96

There are other prefixes,2 but they’re usually not worth the hassle. Annoying as it may
be most of the time, vendor prefixes are very useful when implementations differ, and
they save us from the horrible CSS hacks that we had to use in the past.3

For reasons of brevity and simplicity, the snippets in this chapter feature only un-
prefixed code, unless the code needs to be different for some implementations.

Vendor prefixes are often necessary; having -o-, -ms-, -moz- and -webkit- altogether
in your stylesheet is the worst-case scenario—not every feature needs them. You can
see which prefixes are still needed by checking the reference tables for browser sup-
port at When Can I Use?,4 HTML5 Please5 or the Mozilla Developer Network’s documen-
tation.6 Also, unless otherwise noted, every snippet in this section relies on the follow-
ing simple HTML(5) markup:

<html>

<head>

 <meta charset="utf-8" />

 <title>Learning CSS3</title>

</head>

<body>

<section>

 <h1>Learning CSS3</h1>

 <p>This is just some sample content. Don’t even bother reading

 it; you will just waste your time. Why do you keep reading? Do

 I have to use Lorem Ipsum to stop you? OK, here goes: Lorem

 ipsum dolor sit amet, consectetur adipi sicing elit, sed do

 eiusmod tempor incididunt ut labore et dolore magna aliqua. Still

 reading? Gosh, you’re impossible. I’ll stop here to spare you.</p>

2 For a full list of vendor prefixes, see smashed.by/vndrprfx.
3 If you don’t have time to keep up with which prefixes are needed for each feature, you can use a postprocessor like 	
 prefix-free (smashed.by/prfxfree) that allows you to write CSS without prefixes and adds them via JavaScript.
4 smashed.by/ciuse
5 smashed.by/html5pl
6 smashed.by/mozdevnet

Prefix Browser Engine

-o- Opera

-ms- Internet Explorer

-moz- Firefox

-webkit- WebKit-based browsers, such as Chrome and Safari

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

97

</section>

</body>

</html>

We will cover some basics at the beginning of each section, but then we will quickly
jump to more advanced techniques, so please bear with us. We will explore different
ways to style the simple page above, learning different CSS3 features along the way.
Ready? OK, let’s get started.

Web Typography and Text Techniques
The Web has until recently been a typographically dull place. Unless we resorted to im-
age replacement techniques—each with their own benefits and drawbacks—we were
stuck with the same set of core and operating-system default fonts that we’ve had since
time immemorial. The problem wasn’t just with the fonts, though. We have also lacked
the fine-grained control of text layout and ligatures that we have come to expect in
other media.

CSS3 is changing all of this. You’ve never had a better excuse to drop generic fonts
and broaden your typographical horizons. We’ll go over how to add some rhythm to
your typography with the rem unit, experiment with new fonts, control hyphenation,
and improve your type all around. After all, text is probably the most important ele-
ment on the page, so it deserves special attention.

INTRODUCING REM

If you have any experience with elastic layouts, then you have probably used the em
unit. While ems are the cornerstone of adaptive Web design, using them can be tricky.
They’re based on the current element’s font size (or its parent for font-size), so some
math is involved to calculate how big 1 em actually is. And let’s face it, not everybody
likes doing math.

The new rem (“root em”) unit is a close cousin of the em, with the same benefits but
much easier to use. The rem unit is set to the font size of the root element (which would
be html in HTML). So, 1 rem is always the same size, no matter where you use it in the
document.

To make rems as easy to use as pixels, you can set the font-size of the html element
to be 62.5%, which computes to 10px if the user has not adjusted the browser’s default

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

98

font size. Now when you specify a length in rems, you can just multiply by 10 to get the
value in pixels. Because 10 pixels is probably too small for body copy, you can set the
size you desire in rems on the body element. This value will then be inherited by all
other elements. For example, if you would like your body copy to be 15 pixels, you could
do the following:

html { font-size: 62.5%; }

body { font-size: 1.5rem; /* 15px */ }

The only real downside to rem units is browser support. It is now supported by all major
desktop browsers, but it is not supported by Internet Explorer (IE) 8 and below. To pro-
vide a fallback, you can take advantage of the cascade and set the size in pixels before
setting it in rems. This can add considerable heft to your style sheet, so you could use a
separate style sheet with conditional comments for IE 9 and below, unless you need to
support iOS 3.2, Safari 4 or older versions of Opera.

Setting Up the Rhythm With rem

Now that we have a unit at our disposal that is as easy to use as pixels and as flexible
as ems, composing to a vertical rhythm becomes so much easier. What is this vertical
rhythm we’re talking about? The basic idea is that as you move down the page, the type
and page elements follow a set rhythm.

If we draw imaginary lines down the page at fixed intervals, each line of type or
each margin or any other page element will take up either one line or exact multiples
of lines. They keep to the beat of the page, like a bassist in a blues band. This tightens up
the design, ensuring that page elements line up correctly, even across columns. Stick-
ing to the rhythm will help you achieve visual consistency in the page’s layout.

First things first. We have to set the rhythm for the page. In the example on the next
page, we’ve set this to 2.3 rem, or 23 pixels. This is set on the body element using the
line-height property. We’ve also set the font-size to 1.5 rem, so that all of the basic
typographic elements except the headings inherit this. Having a visual guide to see
whether you’ve skipped a beat is handy, so we’ve created an SVG image that shows lines
at 23-pixel intervals. We’ve also used a basic reset to remove margins and padding so
that they don’t interfere with our rhythm:

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

99

html {

 font-size: 62.5%;

 background: url(line.svg) no-repeat;

}

/* reset */

body, div, dl, dt, dd, h1, h2, h3, h4, h5, h6,pre, p, th, td,

article, section, figure, img {

 margin: 0;

 padding: 0;

}

body {

 font-size: 1.5rem;

 line-height: 2.3rem;

}

If we had only paragraphs of text, our job would almost be complete, even though the
paragraphs would be crunched together without any margins.

Making the Headings Follow the Rhythm

Setting up the paragraphs was a piece of cake, as each line of text has a line height
smaller than the page’s 23 pixel vertical rhythm. But what do we do with elements such
as headings, which need either a font size bigger than our line height or extra vertical
spacing? The trick here is to make the combination of the top and bottom margins and
the line height be exact multiples of our base rhythm:

h2 {

		 font-size: 2.6rem;

 	 line-height: 4.6rem; /* two x base rhythm */

 	 margin: 2.3rem 0 0 0; /* base rhythm top and bottom */

}

h3 {

		 font-size: 2.1rem;

		 line-height: 2.3rem; /* base rhythm */

 	 margin: 2rem 0 .3rem 0; /* 2 top + 0.3 bottom == base rhythm */

}

CODE

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

100

It doesn’t matter how many lines our headings take up; they’ll always take up exact
multiples of the base rhythm, so the beat will continue down the page. We can then fol-
low the same technique for all elements on the page, such as images and code snippets.

Remember that borders also take up space, so you will have to account for them,
such as by reducing the margins. Box shadows, on the other hand, do not take up space,
so you are free to do what you like with them.

If we had used ems in this example, we would have had to recalculate how big the
line height and margins have to be based on the text’s size. With rems, we can almost
ignore the font size completely, except to make sure that the line height is big enough to
include the text without overlapping.7

GEORGIA ON MY MIND

We love Helvetica and Georgia, but isn’t it about time these venerable fonts took a vaca-
tion in the mountains to ease their overworked shoulders and stems? A whole typo-
graphical world is out there, and Web fonts are our passport to experience the delights
of these exotic fonts.

Font formats have a whole political back story, which we won’t bore you with here.
The fallout is that you will need to use a multitude of formats if you want a robust
cross-browser solution. Fortunately, a host of solutions have popped up to help us deal
with this, so you don’t have to think about it too much—unless you want to.

Rolling Your Own @font-face

Your first option is to use a font that you’ve sourced yourself, served from your own
server. We can’t stress enough that you should check the font’s license before doing
this to make sure you have the proper rights. Not every free or commercial font allows
you to use it as a Web font; and even if it does, it might require you to buy an additional
license for this purpose.

Once you’ve chosen a font, you have to prepare it in the right format and link to it
via the @font-face rule. We’ve found the best method is to use the excellent Font Squir-
rel service.8 It enables you to upload a font, and then it spits out the font packaged in all
of the formats you will need, along with the @font-face rule itself. All you need to do is
move the fonts to your server, copy the code into your style sheet, and then reference
the font wherever you want to use it.

7 You can view the example at smashed.by/fntexmpl.
8 smashed.by/fntsqr

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

101

In the example for this section, we’ve used Museo Sans 500 font for the body copy and
Museo 700 for the headings. Both of these are provided for free by Jos Buivenga.9 Let’s
look at the CSS created by Font Squirrel for the Museo 700 font:

@font-face {

 font-family: 'Museo-700';

 src: url('1F9920_0_0.eot');

 src: url('1F9920_0_0.eot?#iefix') format('embedded-opentype'),

 url('1F9920_0_0.woff') format('woff'),

 url('1F9920_0_0.ttf') format('truetype');

}

The font-family property sets the name by which you will need to refer to the font in
the rest of the style sheet, and the src property links to the font itself. The browser will
check each URL in turn until it finds a format it supports. The initial src property is
to support older versions of IE, which have a bug with the regular method. Once you
insert this in your style sheet, you can refer to the font the regular way:

h2 {

 font-family: "Museo-700", serif;			

}

You should be all set, but you need to be aware of an additional detail. The typeface has a
700 weight, which is bold. Note that, by default, browsers will assume that the font file
you specify in @font-face is unbolded, unitalicized, and un-everything-else-that-fonts-
can-be. If you use it in an element with font-weight: bold, they’ll artificially bold the
font for you. Since the Museo font is used in headings, it’s already bolded, and stacking
artificial bolding on top will result in a muddy mess. To avoid this, we have to tell the
@font-face rule that this is already a bold font, using the font-weight descriptor:

@font-face {

 font-family: 'Museo-700';

 …

 font-weight: bold;

}

9 smashed.by/exjlb

CODE

CODE

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

102

Now modern browers will know it is a bold font and won’t try to embolden it further. By
including additional @font-face rules with the same font-family but different values for
font-weight, font-style and font-stretch, you can combine multiple font files into a
single font name and the browser will use the correct one when switching to bold or italic.

Using an Online Font Service

Instead of rolling your own, you could use one of the many online font-serving services
available. Two of the most popular are Google Web Fonts for free fonts and TypeKit for
subscription-based fonts. These subscription services are often the only legal way to
access well-known commercial fonts.

Each service has its own way of including the font. In our example, we’ve used
Google Web Fonts for the main page’s heading. Google provides three methods: via the
link element, via @import and via JavaScript. We’ve opted for the link element and
added it to the head of the document, like so:

<head>

<meta charset="UTF-8" />

<title>Typography in the CSS3 era</title>

<link href='http://fonts.googleapis.com/css?family=Abril+Fatface'

rel='stylesheet' type='text/css'>

…

</head>

The font can then be referred to in the style sheet as before by its name “Abril Fatface”:

h1 {

 font-family: "Abril Fatface";

 font-weight: normal;

 …

}

In this case, we set the font-weight to normal because Firefox tries to artificially bold
an already bold font. Because we can’t control the @font-face rule to set it as a bold
font, we had to do the opposite and specify a normal weight every time it is used. As
you can see, the result has beautiful rhythmic type, without a whiff of core fonts:

CODE

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

103

MEET NEW MEMBERS OF THE FAMILY USING FONT-STRETCH

The font-stretch property has perhaps one of the most unfortunate names in CSS.
It doesn’t artificially stretch the font (a typographic no-no), but instead allows you to
access the expanded and condensed fonts in a typeface. Without font-stretch, if you
wanted to use the Helvetica Neue Condensed font, for example, you would need to use
it as a Web font (license permitting) and map it to a different font-family name. With
font-stretch, it’s as easy as this:

h1 {

 font-family: "Helvetica Neue";

 font-stretch: condensed;

}

Most typefaces don’t come with expanded or condensed fonts, so outside of Helvetica
Neue, you’ll probably find most use for this when using custom fonts via Web fonts.
The values for font-stretch are: normal, ultra-condensed, extra-condensed, con-

densed, semi-condensed, semi-expanded, expanded, extra-expanded and ultra-

expanded. The browser will map the values to the closest font in the typeface. In the
case of Helvetica Neue on OS X, all of the condensed values map to Helvetica Neue
Condensed, unless you have additional fonts installed.

Figure 4.1. A beautiful rhythmic type, using vertical rhythm and the @font-face attribute.

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

104

HYPHENATE YOUR WORDS

We’re used to seeing text aligned left and set ragged right on the Web. In print, justi-
fication along with hyphenation are often used to avoid rivers in the text (large gaps
between words and characters). Until recently, hyphenation has not been available on
the Web, but this is starting to change. The hyphens property is available with prefixes
in Safari (since 5.1) and Firefox and is coming in IE 10. Chrome currently does not sup-
port it, although it does parse the declaration.

In the example below, we’ve set the text to be justified and the hyphenation to be
automatic:

p {

 text-align: justify;

 hyphens: auto;

 …

}

The auto keyword tells the browser to use its hyphenation resource to break words
at the appropriate places and to insert hyphens at the ends of lines. Each language re-
quires its own hyphenation resource, so support will vary from language to language.
If you insert your own soft-hyphen character (­) that will overrule the browser’s
automatic behavior. If you would like to manually set hyphens, you can use the manual

value. Disabling hyphenation (the default) can be done with the none keyword.
Here is an example with (left) and without (right) hyphenation. Notice the large un-

even spacing between words on the second and sixth lines in the unhyphenated text.

CODE

Figure 4.2. An example of a paragraph with (left) and without (right) hyphenation.

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

105

Magazine-Like Layouts
In books and magazines, laying out text over multiple columns is common. This can aid
readability by keeping line lengths short, while still allowing the designer to take full
advantage of the width of the page (or the browser’s window in the case of the Web).

The Multi-column specification brings this capability to CSS. It enables you to
specify a number of attributes for columns, such as number, width and gap size. Let’s
transform the demo above to use columns to get a taste of what can be achieved.

SPECIFYING THE COLUMNS

You can set either the width or the number of columns. The browser will calculate
the other value based on the one specified and the available width of the container. In
this example, we will specify two columns only for sections that are nested two levels
deep within an article. This will avoid giving us multiple columns in the introductory
section and prevent columns from being nested if we ever add sections that are more
deeply nested.

The number of columns can be set with the column-count property, which accepts
an integer as its value. We will also apply a gap between the columns so that they’re
nicely spaced out. This can be applied using the column-gap property:

article > section > section {

 column-count: 2;

 column-gap: 2.6rem;

}

To specify the width of the column instead, you can use the column-width property,
which accepts length values in a similar way to column-gap.

SPANNING COLUMNS

Making text and elements such as images span multiple columns is often useful. This
can be achieved using the column-span property. It is currently an all-or-nothing af-
fair: you can either make it span all columns using the all keyword or not span at all
with the none keyword. Specifying an exact number of columns to span is not possible.
In our example, we will make the h3 headings span the full width of the columns.10

10 The column-span property is not widely supported yet, so your layout could break if it relies heavily on this feature.

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

106

h3 { column-span: all; }

The result should look something like the figure below.11

Another word of caution with multiple columns. Using it on long passages of text can
cause readability issues by forcing the reader to scroll up and down the page for each
column. Consider using it only for short passages where the length of the column
would likely be shorter than the user’s browser window. However, when a page is
printed, multi-column elements will break and continue properly across pages, so it’s
fine to use multiple columns on long passages in print stylesheets.

Layout Techniques
Perhaps the hardest thing to do with CSS to this day is laying out a page. Something
as simple as centering an element on the page can be quite difficult to achieve. Imple-
menting a two- or three-column layout with columns of equal height can turn your
hair gray (if it isn’t already).

These issues boil down to the fact that CSS has never really provided a method for
laying out pages. We’ve been (ab)using float-based layout for years, but it is just one

11 You can try it for yourself by visiting smashed.by/mltclmn.

Figure 4.3. An advanced multi-column, magazine-like layout. The text
block at the top spans multiple columns at the bottom.

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

107

big hack. Just as tables were not designed for layout, neither were floats. They were
designed to do things like float an image within a block of text. But when we lack the
proper tools, we improvise, and we should thank the humble float for playing out of
position all these years. Now, with CSS3, we can ask the float to move over, because we
have new layout toys to play with. One of the most promising is the Flexible Box Layout.

FLEXIBLE BOX LAYOUT

Flexible Box Layout (or Flexbox) is a new box model optimized for UI design. The chil-
dren of a box that is set to use the Flexbox model are laid out along either the horizontal
or vertical axis. The widths of these children expand or contract to fill the available
space, based on the flexible length they are assigned.

Flexbox has had a storied existence. It started as a feature for Mozilla’s XUL and has
been rewritten multiple times. The specification is only now reaching maturity, and
we have fairly complete support in WebKit and Chrome nightlies. It is definitely worth
knowing about because the specification will probably be implemented quickly, if it
hasn’t already happened by the time you read this, especially with the quick release
schedules of browsers such as Chrome and Firefox.

EXAMPLE: HORIZONTAL AND VERTICAL CENTERING 			

(OR THE HOLY GRAIL OF WEB DESIGN)

Being able to center an element on the page is perhaps the number one request among
Web designers—yes, probably even more so than the venerable parent selector or putting
IE 6 out of its misery (OK, maybe a close second then). With Flexbox, this is trivially easy.
Let’s start with a basic HTML template, with a heading that we want to center:

<!DOCTYPE html>

 <html lang="en">

 <head>

 <meta charset="utf-8"/>

 <title>Centering an Element on the Page</title>

 </head>

 <body>

 <h1>OMG, I’m centered</h1>

 </body>

 </html>

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

108

Nothing special here, not even a wrapper div. The magic all happens in the CSS:

html {

 height: 100%;

}

body {

 display: flexbox; /* this value needs prefixes */

 flex-align: center; /* these properties also need prefixes */

 flex-pack: center;

 margin: 0;

 height: 100%;

}

h1 {

 display: flexbox;

 flex-align: center;

 height: 10rem;

}

This is not exactly all the CSS needed for the example, because we’ve stripped out the
extra styling that you probably already know how to use in order to save space. We’ve
also left out the prefixes for the same reason. Only WebKit supports these (with the
-webkit- prefix), but don’t be surprised if Mozilla, Opera and IE support them in the
near future. Best to add the prefixes just in case. Let’s look at the CSS that is needed to
center the heading on the page. First, we set the html and body elements to have a 100%
height and remove any margins. This will make the container of our h1 take up the full
height of the browser’s window. We just need to center everything now.

ENABLING FLEXBOX

Because the body element contains the heading we want to center, we will set its display
value to flexbox:

body {

 display: flexbox; /* this value needs prefixes */

}

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

109

This switches the body element to use the Flexbox layout, rather than the regular block
layout. All of its children in the flow of the document (i.e. not absolutely positioned ele-
ments) will now become Flexbox items.

What do we gain now that our elements have been to yoga class and become all flex-
ible? They gain untold powers: they can flex their size and position relative to the availa-
ble space, they can be laid out either horizontally or vertically, and they can even achieve
source-order independence. (Two holy grails in one specification? We’re doing well.)

CENTERING HORIZONTALLY

Next, we want to horizontally center our h1 element. No big deal, you might say; and
it is somewhat easier than playing around with auto margins. We just need to tell the
Flexbox to center its Flexbox items. By default, Flexbox items are laid out horizontally,
so setting the flex-pack property will align the items along the main axis:

body {

 display: flexbox;

 flex-pack: center;

}

The other possible values are start, end and justify. The start value aligns to the left
(or to the right with right-to-left text), end aligns to the right and justify evenly dis-
tributes the elements along the axis.

If you want to explicitly set the axis that the element is aligned along, you can do
this with the flex-flow property. The default is row, which will give us the same result
that we just achieved. To align along the vertical axis, we can use flex-flow: column. If
we add this to our example, you will notice the element will be vertically centered but
will lose the horizontal centering. Reversing the order by appending -reverse to the
row or column values is also possible (flex-flow: row-reverse or flex-flow: column-

reverse), but that won’t do much in our example because we have only one item.

CENTERING VERTICALLY

Centering vertically is as easy as centering horizontally. We just need to use the ap-
propriate property to align along the “cross axis.” The what? The cross axis is basically
the axis other than the main one; so, if Flexbox items are aligned horizontally, then the
cross axis would be vertical, and vice versa. We set this with the flex-align property:

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

110

body {

 display: flexbox;

 flex-pack: center;

 flex-align: center;

}

This is all there is to centering elements with Flexbox! We can also use the start and
end values, as well as baseline and stretch. Let’s see the finished example. To try it,
point your Web browser to smashed.by/flxbox1.

You might notice that the text is also center-aligned vertically inside the h1 element. This
could have been done with margins or a line height, but we used Flexbox again to show
that it works with anonymous boxes (in this case, the line of text inside the h1 element).
No matter how high the h1 element gets, the text will always be in the center:

h1 {

 display: flexbox;

 flex-align: center;

 height: 10rem;

}

Figure 4.4. Simple horizontal and vertical centering using Flexbox.

CODE

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

111

FLEXIBLE SIZES

If centering elements was all Flexbox could do, it’d be pretty darn cool, but there is
more. Let’s see how Flexbox items can expand and contract to fit the available space
within a Flexbox element. For this, we’ll use another example, so point your browsers
to smashed.by/flxbox2.

The HTML and CSS for this example are similar to the previous one. We’re enabling
Flexbox and centering the elements on the page in the same way. In addition to this, we
want to make the title (inside the header element) remain consistent in size, while the
five boxes (the section elements) should adjust in size to fill the width of the window.
To do this, we use the new flex function as the value of the width property:

section {

 /* removed other styles to save space */				

 flex: 1;

 height: 250px;

}

What we’ve just done here is to make each section element take up 1 flex unit. Be-
cause we haven’t set any explicit width, each of the five boxes will be the same width.
The header element will take up a set width (277 pixels) because it is not flexible. We di-
vide the remaining width inside the body element by 5 to calculate the width of each of
the section elements. Now if we resize the browser window, they will grow or shrink.

Figure 4.5. An interactive slideshow built using Flexbox.

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

112

In this example, we’ve set a consistent height, but this could be set to be flexible, too, in
exactly the same way. We probably wouldn’t always want all elements to be the same
size, so let’s make one bigger. On hover, we’ve set the element to take up two flex units:

section:hover {

 flex: 2;

 cursor: pointer;

}

Now the available space is divided by 6 rather than 5, and the hovered element gets twice
the base amount. Note that an element with two flex units does not necessarily become
twice as wide as one with one unit. It just gets twice the share of the available space added
to its “preferred width.” In our examples the “preferred width” is 0 (the default).

SOURCE-ORDER INDEPENDENCE

For our last party trick in this section, we’ll study how we can achieve source-order
independence in our layouts. When clicking on a box, we will tell that element to move
to the left of all the other boxes, directly after the title. All we have to do is set the order
with the flex-order property. By default, all flex items are in the 0 position. Because
they’re in the same position, they follow source order.

To make our chosen element move to the first position, we just have to set a lower
number. We chose -1. We also need to set the header to -1 so that the selected section
element doesn’t get moved before it:

Figure 4.6. An interactive slideshow with flex-order.

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

113

header {

 flex-order: -1;

}

section[aria-pressed="true"] {

 flex-order: -1; /* lower than 0 so moves before other section elements

*/

 flex: 3;

 max-width: 370px;	 /* stops it from getting too wide */

}

Hopefully, this has given you some inspiration and enough introductory knowledge of
Flexbox to enable you to experiment with your own designs.

Working With Images
Now that we’ve got a better understanding of how we can build advanced layouts with
CSS3, let’s move on to some visual techniques that we can use to spice up our layouts a bit.

MULTIPLE BACKGROUNDS AND GRADIENTS

Have a look at the following style, at two different sizes:12

Going just by the image, how would you go about coding it in CSS? You would probably
whip up the basic layout in a couple of minutes, as shown on the next page.

12 smashed.by/multbgs	

Figure 4.7. Wide view of multiple backgrounds and gradients. Figure 4.8. Narrow view.

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

114

html {

 background: #222;

 min-height: 100%;

}

body {

 margin: 0;

}

section {

 max-width: 25em;

 margin: 0 auto;

 padding-top: 150px;

 color: white;

 font: italic 100%/1.5 'Palatino Linotype', Georgia, serif;

}

But how to add the stars, skyline and moon? We have only two elements to use (html
and body—the section element is too narrow), but we need four background images.

In the past, we’d probably just shrug and add a few wrapper divs. Or we would give
up on flexibility and combine some of the images. But these days, we can have our cake
and eat it, too. Meet multiple background images:

html {

 background: url("moon.png") no-repeat 100% 1em,

 url("stars.png") repeat-x 0 0,

 url("city.png") repeat-x bottom,

 linear-gradient(black, #444);

 background-color: #222;

 min-height: 100%;

}

You probably noticed that the last background image is not an external URL. Indeed,
we can now generate gradients right in the CSS file. The gradient used above is a simple
top-to-bottom gradient with two colors. But you can do much more complex things
with CSS gradients. You can have multiple colors at different positions or different an-
gles and even radial gradients. You can also create all sorts of geometric patterns with
a few CSS gradients.

CODE

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

115

However, current support for CSS gradients is not yet as good as the support for mul-
tiple backgrounds. The way we wrote our code above, even though we get the fallback
color when multiple backgrounds are not supported, we still get it when only gradients
are not supported. A better option would be to provide two fallbacks:

html {

 background: url("moon.png") no-repeat 100% 1em,

 url("stars.png") repeat-x 0 0,

 url("city.png") repeat-x bottom;

 background: url("moon.png") no-repeat 100% 1em,

 url("stars.png") repeat-x 0 0,

 url("city.png") repeat-x bottom,

 linear-gradient(black, #444);

 background-color: #222;

 min-height: 100%;

}

A bit repetitive, isn’t it? And it’s even worse with vendor prefixes. But we also have the
body element, so we can take advantage of that and move the gradient to an element
other than the one the rest of our backgrounds are in:

html {

 background: #222;

 background: linear-gradient(black, #444);

 height: 100%;

}

body {

 margin: 0;

 background: url("stars.png") repeat-x 0 0;

 background: url("moon.png") no-repeat 100% 1em,

 url("stars.png") repeat-x 0 0,

 url("city.png") repeat-x bottom;

 min-height: 100%;

}

Much better, and this gets the most out of each browser’s capabilities.

CODE

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

116

BACKGROUND-ORIGIN, BACKGROUND-SIZE, OUTLINE

Let’s say we have been assigned to create the
design displayed on the right using CSS.13 Again,
we’re sure you could quickly whip up the basic
layout and perhaps integrate some of the basics
that you probably know about RGBA and text
shadows:

html {

 min-height:100%;

 background: url('rainbow-wood.jpg');

}

section {

 max-width: 25em;

 padding: 3em;

 margin: 4em auto;

 background: black url(logo.svg) no-repeat bottom right;

 color: white;

 font: bold 100%/1.5 sans-serif;

 text-shadow: 0 -.1em .2em black;

}

h1 {

 margin-top: 0;

}

The result (see next page) is close to what we want, but there are several problems:

•	 The html background image is huge. That’s good for a huge screen, but generally
we would want to resize it for smaller screens.

•	 The pink logo is too small and is stuck in the bottom-right corner with no spacing
from the edge.

•	 There is no pink “stitching.”

Let’s tackle these issues one by one.

13 smashed.by/bgexample1

Figure 4.9. A design that we are going
to reproduce with CSS3.

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

117

RESIZING THE BACKGROUND TO FIT

CSS3 gives us a new property to control the size of a background image: background-

size. This enables us to use the same image at multiple sizes. We can either explicitly
define a size or use one of the two sizing keywords, contain and cover:

•	 cover

The image will adjust to completely contain the element. This is what we would
use to make Flickr-like square thumbnails, where every image is cropped to a
square.

•	 contain

The image will adjust to fit the element but without being cropped.

In this case, we can’t use background-size: contain because we don’t want the back-
ground color to show through. Instead, we want our image to shrink or stretch to cover
the entire viewport.

FIXING THE LOGO

To enlarge the SVG logo, we use background-size again, but explicitly setting a size
this time:

background-size: 150px;

Figure 4.10. The result after we apply our CSS 2.1 knowledge.

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

118

By providing only one value instead of two, we preserve the aspect ratio, while the
image stretches to a width of 150 pixels. But it’s still stuck at the bottom. In the old
days, we would just shrug and edit the image to include the spacing within it. Now
with CSS3, we have a bit more granular control over the placement of the image. If we
analyze the examples above a bit more carefully, we would see the problem—the image
is in the bottom right of the padding area, but we’d like it to be at the bottom right of
the text. CSS3 gives us a new property, background-origin, that controls whether the
image is placed relative to the border box, the padding box or the content box.

In this case, we’d like to place the image at the bottom-right edge of the content box
and not of the padding box, which is the default. This line of CSS will do that:

background-origin: content-box;

ADDING THE PINK STITCHING

This would have been straightforward if the pink-dashed border was at the edge of the
container. This CSS snippet might have done it:

border: 1px dashed #f06;

But how do we move this border inside the container? We can’t. Instead, we’ll shrink the
container and then add the extra color outside of the border with the outline property:

border: 1px dashed #f06;

outline: 20px solid rgba(0,0,0,.8);

A different approach would be to use only the outline property with an outline-offset
of -20px (we will not use this technique here). Here is the full snippet:

html {

 min-height:100%;

 background: url('rainbow-wood.jpg');

 background-size: cover;

}

section {

 max-width: 20em;

 padding: 3em;

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

119

 margin: 4em auto;

 border: 1px dashed #f06;

 outline: 20px solid rgba(0,0,0,.8);

 background: url(logo.svg) no-repeat bottom right;

 background-color: black;

 background-color: rgba(0,0,0,.8);

 background-origin: content-box;

 background-size: 150px;

 color: white;

 font: 100%/1.5 sans-serif;

 text-shadow: 0 -.1em .2em black;

}

h1 {

 margin-top: 0;

}

Background Clipping
Now, consider this simpler variation of the previous style, as seen below.14

14 smashed.by/bgclipping

Figure 4.11. Allowing semi-transparent borders with background clipping.

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

120

Your first crack at achieving this would probably be something like this:

html {

 min-height: 100%;

 background: url('rainbow-wood.jpg') top;

 background-size: cover;

}

section {

 max-width: 20em;

 padding: 3em;

 margin: 4em auto;

 border: 20px solid rgba(0,0,0,.5);

 background-color: black;

 color: white;

 font: 100%/1.5 sans-serif;

 text-shadow: 0 -.1em .2em black;

}

h1 {

	 margin-top: 0;

}

But when you try it out, you will notice that the
border is not actually semi-transparent. Why did
this happen? The reason is that, by default, the back-
ground extends beneath the border as well. Remem-
ber all those times when you used border styles with
gaps (i.e. dotted, dashed and double) in the days of
CSS2.1? It’s the same thing, but now we have tools to
control this behavior, in particular the background-

clip property. Its default value is border-box, which
results in the behavior you’ve experienced so far. But
we can change it to padding-box:

background-clip: padding-box;

This will cause the background to clip exactly where we want it.

Figure 4.12. Our border is not
actually semi-transparent. Why?

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

121

BORDER IMAGES

What about this style?15 How would you go about get-
ting the zig-zag border? You would probably be forced
to use a fixed width and height and a huge background
image with the no-repeat property. If the viewer
had set a font size larger than the browser’s default
or didn’t have a font installed close enough to the one
you’re using, the text would flow beyond the fixed
background image. We’ve all been there, seen that.

The border-image property is a powerful new fea-
ture that lets us use a single small image for both the
background and the border of an element. We define
how it’s scaled or repeated, and it can be different for
each edge. In this case, we’ll use Figure 4.14.

And here is the CSS snippet that goes with it:

html {

 min-height:100%;

 background: white url(background.jpg);

}

section {

 max-width: 20em;

 padding: 3em;

 margin: 4em auto;

 border: 20px solid transparent;

 -webkit-border-image: url(cloth.svg) 33.33% round;

 -moz-border-image: url(cloth.png) 33.33% round;

 -o-border-image: url(cloth.svg) 33.33% round;

 border-image: url(cloth.svg) 33.33% round fill;

 font: 100%/1.5 sans-serif;

 text-shadow: 0 1px white;

}

h1 {

 margin-top: 0

}

15 smashed.by/brdimages	

Figure 4.13. A border image example.

Figure 4.14. The cloth.svg
image we are going to use
for the fancy borders.

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

122

The border-image property specifies which image to use, how wide each slice should
be (in this case, we want to cut it in thirds, both horizontally and vertically, so it’s just
one number) and how these slices should be repeated or stretched (the round keyword
repeats it but scales it a bit so that we have a round number of repetitions). The fill
keyword keeps the middle slice as a background, but it’s not supported by the prefixed
implementations. Luckily, the prefixed implementations have this behavior by default.
Also, you might have noticed that we are serving a SVG to every browser except Fire-
fox. This is because at the time of writing this chapter, Firefox is very buggy with SVG
border images. But Mozilla is working on it, so you might want to check for yourself.

When we use border-image, the border style and color that we define are ignored as
long as the border’s style is not set to none. Only the border-width has an effect. But we
usually want to specify something like solid transparent, so that when border-image
is not supported we don’t get an ugly thick border. Your mileage may vary, and in some
cases a “real” border fallback is better than none.

Transforms
CSS transforms provide the ability to apply one or a series of transformations to an ele-
ment. These include scaling, skewing, rotating and translating. Many of these effects
have not been possible in HTML before, beyond converting the content into an image,
with all of the drawbacks that this entails.

We will construct a simple image gallery to demonstrate how to apply a number
of these transforms. Hovering over an image and clicking on it will trigger different
transformations. You can load this in your browser by going to smashed.by/trnsfrms.

Applying a Simple Transform

In the demo, each image is included in a figure element, like so:

<figure>

</figure>

<!-- repeat figure for each image -->

We are including all of the images at their full size and scaled down, rather than using
separate thumbnail images. This can be done with the scale transform:

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

123

figure {

 float: left;

 z-index: 1;

 margin: 1rem;

 width: 160px;

 height: 160px;

 transition-duration: 1s;

 transform: scale(0.25);

}

The transform property accepts a space-separated list of transform functions as a
value. Here we are using the scale function to reduce the element to a quarter of its
size. This will scale from the center of the element by default. Values lower than 1 will
scale the element down, and values higher than 1 will scale it up.

Bear in mind that transforms do not effect the flow of the document, so each ele-
ment will take up the same space as it did before it was transformed. For this reason we
have also set a width and height that is one fourth of the original image’s dimensions,
so that we don’t have a lot of empty space around our scaled images.

After applying some additional styling to the body and to the images themselves, we
should get something like the following:

CODE

Figure 4.15. A simple image gallery without transformations.

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

124

APPLYING ADDITIONAL TRANSFORMS

Transforms can get more interesting when we chain them together and combine them
with transitions. We’ve already set up our transition in the previous code snippet, so
we just have to change the transform on hover to make it take effect:

figure:hover {

 transform: scale(0.33) rotate(2deg);

 z-index: 100;

 cursor: pointer;

}

Here we are applying two transforms. Any number of transforms can be applied by
specifying them in a space-separated list. Here we are scaling the figure by a third,
then rotating it by 2 degrees. The rotate function transforms the element around the
transform axis clockwise. To rotate counterclockwise, we use a negative value:

figure:nth-of-type(even):hover {

 transform: scale(0.33) rotate(-2deg);

}

Each transform function is applied in turn,
so the element is first scaled and then rotated.
Grasping this is important because the order
will affect the size of units if scaled and will af-
fect the direction of each axis if rotated.

Because all transform functions are applied us-
ing one property, if you just want to transition one
value, you will still have to specify the full list, or
else the other values will return to their defaults.
On hovering over an image in our demo, the image
will both scale and rotate as follows. You might
have noticed that the image after the hovered ele-
ment also gets transitioned and transformed after a
short delay. Here we’ve added a translateX trans-
form, which moves the element along the x axis:

Figure 4.16. Transformation applied to
an image on hover using CSS3.

CODE

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

125

figure:hover + figure {

 transform: scale(0.25) rotate(-1deg) translateX(15px) ;

 transition-duration: 1.5s;

 transition-delay: .2s;

}

You’ll notice that it doesn’t strictly move along the x axis or translate by 15 pixels, be-
cause the scale transform reduces the length by a quarter, and the rotate transform
moves the x axis by 1 degree counterclockwise.

The translateX function takes one value, using any valid length unit. There is also
a corresponding translateY function. Both can be set together using the translate
function, which accepts two values (x then y), separated by commas.

The final set of transform functions are skewX, skewY and skew. They are specified
the same as the transform functions, but they skew the element on one or both axes.
This is commonly used to apply a simulated 3-D perspective.

ADJUSTING THE TRANSFORM’S ORIGIN

All of the transforms in the demo use the default origin for the transform, which is the
center of the element. This can be specified using the transform-origin property. It
accepts one to four space-separated values, which can be lengths, percentages or the
keywords of top, left, bottom, right or center. If only one value is specified, then
the second value will default to center. If one of the values isn’t a keyword, then the
first value will be for the horizontal position. When using a keyword, you can define an
optional offset value, specified as a percentage or length, directly after it:

transform-origin: top 10% left 25%;

This would set the transform’s origin to be the point that intersects 10% from the top of
the element and 25% from the left of the element.

Selectors
CSS selectors are often considered to be the least fancy playground for CSS developers.
You might think that we don’t really need any additional selectors to target elements in
our mark-up, or you might be struggling with nasty jQuery workarounds to overwrite
default CSS values in particular situations. In both cases, with CSS3 selectors, you are

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

126

in for a treat. Let’s see what possibilities we have now that CSS3 selectors are gaining
support in Web browsers.

HIGHLIGHTING THE CURRENT LINK TARGET

Let’s return to the vertical rhythm example from the section on typography. As you
probably know, you can link to specific sections on the page by using a hash identifier
after the URL; so, we could use something like http://example.com/index.html#def to
link to the section on typography definitions. When a page has a few large sections, it’s
immediately obvious to the user which section they have landed on. However, when
there are many possible link targets, the user might not be certain where they are sup-
posed to look. In these cases, highlighting the link target can be useful.

In the past, we would have needed JavaScript to accomplish this. CSS3 gives us a
new pseudo-class to target the current link target, i.e. the element whose ID attribute
matches the current URL hash. This pseudo-class is predictably named :target.

Let’s highlight each heading in our example with a semi-transparent yellow to
make it clear to the user where they have landed within the document. We could use
the following rule for this:

h1:target, h2:target,

h3:target, h4:target,

h5:target, h6:target {

 background: hsla(65,100%,50%,.5);

}

A fallback for the HSLA color is not needed in this case, because practically any brows-
er that supports :target also supports HSLA colors. Old browsers that don’t support
:target are not really a problem because the selector is a usability enhancement and
not crucial functionality. Wikipedia uses :target when you click on a reference to
highlight it within a (usually long) list of references.16 It really helps you spot the linked
reference quickly, doesn’t it?

TARGETING ELEMENTS BASED ON THEIR POSITION IN THE DOM

We’ve all been there. Sometimes we want to target odd-numbered table rows or every
third image on the page or the last item in a list or the first four paragraphs of an article.

16 Try it at smashed.by/wikitarget.

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

127

In CSS 2.1 we had only one structural pseudo-class, :first-child. CSS3 expands on
this, giving us a plethora of new pseudo-classes that solve not only these use cases but
many more.

•	 nth-child

•	 last-child

•	 nth-last-child

•	 only-child

•	 first-of-type

•	 nth-of-type

•	 last-of-type

•	 nth-last-of-type

•	 only-of-type

The number of pseudo-classes in this list might seem daunting, but once you understand
the possibilities of :nth-child and how it works, then understanding the rest and know-
ing how to use them become very easy because they are merely variations or shortcuts.
The ones starting with nth introduce a concept that didn’t exist in CSS 2.1: parameterized
pseudo-classes. Similar to functions, they accept a parameter in parentheses that differ-
entiates their behavior. The syntax of this parameter could be any of the following:

•	 A number, with :nth-child(1) being equivalent to CSS 2.1’s :first-child pseudo-
class. To express :nth-child(5) in CSS 2.1, you would have had to write :first-

child + * + * + * + *, which is unacceptably verbose, especially for big numbers.

•	 An expression like 5n or 3n+2, where n represents any number from 0 to infinity.
For example, :nth-child(3n+1) is equivalent to :nth-child(1), :nth-child(4),
:nth-child(7), :nth-child(10), etc., with the list being infinite.

•	 One of the keywords odd or even, which is equivalent to 2n+1 and 2n, respectively.

For example, to darken the background of every odd-numbered table row, we could
write something along the lines of this:

tr:nth-child(odd) {

 background: rgba(0,0,0,.15);

}

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

128

This is essentially the zebra-stripe effect we commonly use JavaScript for.
Please note that the difference between :nth-* and :nth-last-* is merely the direc-

tion of numbering: :nth-child starts from the first sibling, whereas :nth-last-child
starts from the last sibling. Therefore, :last-child is basically equivalent to :nth-last-

child(1), and :only-child is equivalent to :first-child:last-child because it matches
elements with no siblings. Interestingly, we can generalize the :only-child pseudo-
class, so that when we need to target elements with exactly five siblings, we can use
:first-child:nth-last-child(6) to target the first one and then use :first-child:nth-

last-child(6) ~ * for the rest.
The difference between the *-child and *-of-type pseudo-classes is that the latter

maintains a separate count per tag name. For example, body:first-child would never
match because body always has a head sibling, but body:first-of-type would always
match because we have only one body element. This might not be particularly useful for tar-
geting body, but it is incredibly useful if we want to target, say, every third image in markup
that has a varying number of paragraphs between images, in which case :nth-child would
render inconsistently because it operates on all siblings, regardless of their type.

WHAT ABOUT OLDER BROWSERS?

Usually the functionality added by these selectors is not crucial, so a Web page will still
work fine without it. But if you absolutely need to support legacy browsers, a polyfill
can help. The most popular one at the moment is Selectivizr.17

Mix Units Without Problems
Once again, let’s return to our example in section
on working with images.18 Suppose we now need to
change from static text to a Web form, with the text
being inside a textarea element, allowing people
to edit it. We gave our textarea a padding of 1 em,
a 1-pixel border and a width of 100% because we
wanted it to occupy the full width of the container.
You probably see where this is heading—to the
dreaded old CSS Percentage Problem™.19

17 smashed.by/slctvzr
18 smashed.by/mixunits
19 smashed.by/percproblem

Figure 4.17. Our starting point: a
style from the previous section.

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

129

Paddings and borders are added to that 100%, caus-
ing the entire box to be much bigger than 100% and
look not so fancy. In the past, we would have had
to specify our padding and borders in percentages,
too, and specify a width of 100% minus the pad-
ding minus the border’s width. Luckily, in CSS3 we
now have the power to change the way widths are
calculated and to do what we have always thought
more natural—make the width include padding
and borders. The box-sizing property is responsi-
ble for this amazing switch. It accepts 3 values:

•	 content-box

The default, which we already know and
dislike.

•	 padding-box

With this, padding is included in the width,
but the border is not. It doesn’t have very
good browser support, so avoid it for now.

•	 border-box

Both padding and borders are included in
the width.

By applying box-sizing: border-box, our issue is now solved.20 We’ve saved the best
for last: this property is not only supported by every modern browser but also by IE 8!

Transitions
Until fairly recently, websites designed to Web standards were fairly static. If you
wanted to add any kind of animation between elements on a page, you had to do it
either with Flash or complex JavaScript. Now, if you have the freedom to design to
modern browsers, you can achieve these effects using CSS, with the added advantage
that they will perform better on mobile devices due to the animation routines being
optimized in the browser.

20 smashed.by/box-sizing

Figure 4.18. The dreaded Old CSS
Percentage Problem™.

Figure 4.19. Mixing percentages with
pixels and ems, using box-sizing.

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

130

Transitions are one half of the animation capabilities of CSS. These are designed for
simple animations of CSS property values between one state and another. Tradition-
ally in CSS, if you changed a property’s value, it would switch instantly between the old
value and the new one. With CSS transitions, the browser interpolates between the old
and new value for the specified duration.

USING TRANSITIONS

To demonstrate how to use transitions, we’re going to have a day at the races. Do you
remember those horse-racing slot machines when you were a kid? If not, don’t worry;
the idea is simple: horses will move along a track at varying speeds, and you have to
guess which will come in first. This game has been recreated using CSS transitions.
You can play along at home by going to smashed.by/trnsxpl. Just hover over the track
and watch the horses go!

The mark-up for the track is as follows:

<div id="track">

 <h1>The Smashing Derby</h1>

Figure 4.20. A horse-racing slot machine game created with CSS transitions.

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

131

 <div></div>

 <!-- additional horses -->

</div>

Each li represents a lane, and the div within holds the horse. We then transition the
width of the div on hover over a set duration:

#track div {

 width: 3em;

 height: 3em;

 background: url(horse.png) no-repeat right center;

 transition-property: width;

 transition-duration: 6s;

}

#track:hover div {

 width: 40em;

}

Here we are saying that the width property should be transitioned over 6 seconds from
3 ems to 40 ems when the track is hovered over. The transition-property property
defaults to all, so if you do not set it explicitly, it will transition every animatable prop-
erty that changes.

All transition properties accept a comma-separated list of values, so you can specify
multiple properties to transition. If the number of values in properties such as transtion-

duration is fewer than the number of properties to transition, it will match them up
similar to what we get with the background properties.

ADJUSTING THE VELOCITY OF THE HORSES

A race wouldn’t be much fun if the horses all ran at exactly the same speed and finished
at the same time. So, let’s adjust the velocity of each horse with the transition-timing-

function property. All types of timing functions take the same duration to complete,
but they will speed up and slow down at different rates, depending on the bezier curve
that is specified. If this sounds like too much math, don’t worry: you can choose from a
set of built-in timing functions. These presets have the following keyword values:

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

132

•	 ease

This is the default.

•	 linear

Transitions at a constant speed from A to B.

•	 ease-in

Transitions slowly and then accelerates as it nears point B.

•	 ease-out

Transitions quickly and then slows down as it nears point B.

•	 ease-in-out

Transitions quickly until the halfway point and then slows as it nears point B.

Each of these functions is used in this order for the horses in the demo:

li:nth-of-type(1) div { transition-timing-function: ease; }

li:nth-of-type(2) div {

 transition-timing-function: linear;

}

li:nth-of-type(3) div {

 transition-timing-function: ease-in;

}

li:nth-of-type(4) div {

 transition-timing-function: ease-out;

}

li:nth-of-type(5) div {

 transition-timing-function: ease-in-out;

}

Watching the demo, you’ll see that horse 1 (ease) flies out into the lead, a certain win-
ner. But oh no! It runs out of steam in the final third. And in a photo finish, all five cross
the line at exactly the same time!

If you are not happy with the presets, you can define your own using the cubic-

bezier function. To define a cubic bezier, you have to specify the x and y coordinates
for the curve’s control points. The start is always anchored at 0,0, and the end is an-
chored at 1,1, so these do not have to be defined. The ease-in transition function would
be defined as the following using the cubic-bezier function on the next page:

CODE

Restyle, Recode, Reimagine With CSS3 CHAPTER 04

133

transition-timing-function: cubic-bezier(0.42, 0, 1, 1);

A number of tools enable you to visually specify and tweak the cubic-bezier function,
such as Lea Verou’s Cubic Bezier preview tool.21

HOLD YOUR HORSES

You might not want the transition to happen as soon as the value changes. You can
control this with transition-delay property. This works in exactly the same way as
the transition-duration property:

#track div {

 …

 transition-property: width;

 transition-duration: 6s;

 transition-delay: 1s;

}

With all of these properties under your belt, you will have elements flying across the
page in no time!

Conclusion
While designers and developers keep coming up with creative technical solutions,
one thing is clear: CSS3 is here to stay. Not only does it greatly reduce the time spent
converting designs from visuals to code, but it also helps us produce flexible styling
that adapts to all kinds of circumstances: code changes, different content and different
kinds of devices.

As browsers catch up to all of these CSS3 goodies, the CSS Working Group is already
planning the next iteration of CSS, commonly referred to as CSS4. This will bring
highly anticipated features such as parent selectors, variables, nesting and conical
gradients, most of which are still under debate.

Exciting as CSS3 and CSS4 might sound as buzzwords, keep in mind that CSS as a
whole is basically a living standard. As every member of the CSS Working Group can
attest, there is no such thing as “CSS3” or “CSS4” in Web standards. In fact, there is no

21 smashed.by/cbcbz

CODE

CHAPTER 04 Restyle, Recode, Reimagine With CSS3

134

global version of CSS anymore. After CSS 2.1, CSS was modularized, and each module
now has its own version. And some Level 1 modules might actually have come out later
than some Level 4 modules. But we don’t need buzzwords to get excited about every-
thing that’s coming out in the world of CSS, do we?

About the Author
David Storey holds a Master’s degree in Internet and Distributed Sys-
tems from the University of Durham, UK. He is an evangelist for open
Web standards and a member of the CSS Working Group. David cur-
rently lives in Mountain View, California, and works for Motorola Mobil-
ity. Previously, he worked at Opera, where he founded the Developer
Relations team and was the Product Manager for Opera Dragonfly.
He also worked for CERN and was an author for CSS3.info during its
golden period. His specialities are HTML, CSS, SVG and JavaScript.

About the Reviewer
Tab Atkins Jr. wears many hats. He works for Google on the Chrome
browser as a Web standards hacker, although his code contribution
is fairly minimal. Tab works mainly with HTML and CSS specifications.
He’s also a member of the CSS Working Group and contributes to sev-
eral other working groups in the W3C.

About the Author
Lea Verou has a long-standing passion for open Web standards, and
has been often called a “CSS guru”. She loves researching new ways
to take advantage of modern Web technologies and shares her find-
ings through her blog, lea.verou.me. Lea also makes popular tools
and libraries that help Web developers learn and use these stand-
ards. She speaks at a number of well-known international Web de-
velopment conferences and writes for leading industry publications.
Lea also co-organized and occasionally lectures the Web develop-
ment course at the Athens University of Economics and Business.

JavaScript Rediscovered:
Tricks to Replace
Complex jQuery

Written by Christian Heilmann
Reviewed by Paul Irish

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

136

hen jQuery appeared, it was an utter revelation. Its first and foremost job
was to make browsers behave. Until then, support for basic features such
as accessing parts of the document, responding to user interaction and

even styling elements varied vastly from browser to browser.
jQuery replaced the DOM specification, which defined accessing content on the page

with getElementById() and getElementsByTagName(), with a simpler approach: using
CSS selectors. This opened a whole new world of development to designers who knew
their CSS but suffered the daily frustration of browsers that did not support complex
selectors. In other words, jQuery enabled us to use the CSS of tomorrow, today. That
and the chaining approach of jQuery (which meant much less code to write) were the
reasons for its quick rise to success.

Fast-forward some years to now (and by the time you hold this book in your hands,
we will be even further along). We have HTML5, we have CSS3 support, and we have
many more things to play with in the browsers that we and our users have installed.
Yes, the scourge of IE 6 is still upon us, and IE 8 will be with us for quite some time, too,
but all in all our position is much better. Libraries such as jQuery still offer the main
benefit of fixing things in older browsers, but they also cause discontent, and the rea-
son is because we are overusing them.

As a community, we have become dependent on jQuery. This is understandable, but
not good. jQuery is written in JavaScript but is not the same as JavaScript; it is also not
built natively into the browser. With the rise of the mobile Web, quite many people are
turning away from jQuery because it is too slow and heavy for those fancy devices in
our pockets. Finding good JavaScript developers is hard: for every position you adver-
tise for a JavaScript developer, you will get about 20 CVs from people who have never
written anything but jQuery. This dilutes our craft.

Let’s look, then, at some of the things that browsers offer us these days that we can
use to write incredibly small and usable solutions without resorting to jQuery. A lot of
these things will also help us write cleaner and faster jQuery code. Because the jQuery
library abstracts away a lot of the issues we face as developers, it is all too easy to write
code that looks simple but deep down results in a lot of looping and comparing. And
this is the reason for slow websites.

THE POWER OF MIXING AND MATCHING

On the Web, the main trick to developing code that is concise, stable, efficient and easy
to maintain is separation and delegation. With jQuery, we have forgotten much of this.
Excessive length makes the CSS selectors in our scripts break when the HTML chang-

W

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

137

es. Overusing class selectors forces the HTML developer to add a lot of superfluous
classes in order to be able to use a certain plugin. Creating and styling HTML in jQuery
makes it harder to find where a background color comes from when you are asked to
change it. To write code that is easy to maintain, remind yourself of which technolo-
gies are good at doing what. This has shifted quite a bit since the inception of jQuery:

•	HTML is the structure and base on which to build. 				
Your HTML should make sense and provide basic functionality: links that
point to other websites, buttons that send forms to a script to reload the page,
and elements that structure the content. The reason is that, when everything
breaks, the browser is left with the HTML. If the HTML makes sense, you win.
If there is a button that does not do anything, though, you will annoy users.

•	CSS defines everything interactive and visual. 				
We have gone beyond fonts and color to allow for animation and transitions.
Media queries enable us to define different layouts for different devices. Using
content generation, we can create elements to achieve a certain visual effect
without soiling the HTML with divs and spans.

•	 JavaScript brings extra functionality. 						
With script loading and AJAX, you can load content on demand. You can add
event listeners to enable elements to be touchable and clickable, to read the
orientation of a device, and to find out how far a user has scrolled or where the
mouse pointer is.

The trick is to embrace these new opportunities and to not give old browsers effects
that they will choke on. Those old methods won’t help anyone in the long run. Yes, you
could animate a menu in IE 6, but why bother writing this “nice to have” functionality
when it is built into other browsers?

FEATURES WE CAN USE NOW

Let’s look at some features in browsers that we can use now. To get the latest informa-
tion on which browsers support them, check out the great resource When Can I Use,1
which is constantly updated. Anything I tell you about browser support now would be
outdated in a few weeks’ time. This is the speed we have to keep up with these days.

1 http://smashed.by/caniuse

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

138

CASHING IN THE $: QUERYSELECTOR AND QUERYSELECTORALL

Now that we have learned from jQuery’s success, browsers have a way to target ele-
ments on the page using CSS selectors. The querySelector method targets a single
element, and querySelectorAll targets a list of matched elements. The syntax of the
selector is similar to CSS. So, document.querySelector('#content p') would target
the first paragraph in the element with the ID content; document.querySelector('nav
li:last-child') would target the last list item in the first nav element; and document.
querySelectorAll('p') would target all paragraphs in the document. As simple as that.

KEEPING IT CLASSY: CLASSLIST

A big use case of jQuery is accessing many elements at once and changing their styles
by manipulating their styles collection with the css() method. This is handy, but also
annoying because you are putting styling information in the JavaScript. Much simpler
would be to add a class to the element in question and leave the rest to CSS. When you
think about it, we often repeat CSS selectors in jQuery and in our style sheets. In many
cases, we had to do this because browsers did not support CSS3 selectors—now they do.

Being able to test for classes in HTML elements and dynamically add and remove
them is incredibly powerful. In JavaScript, we now have a classList property in
HTML elements that contains a collection of applied CSS classes. In the past, this was
done with className, which contained a simple string, and it was up to us to find
other strings in it and to add and remove substrings from it. With classList, we have
methods for that. We can use element.classList.add(name) to add a class, element.
classList.remove(name) to remove it, element.classList.contains(name) to check
whether a class is applied, and element.classList.toggle(name) to toggle a class on and
off. Later in this chapter, we will see just how powerful this is; we can avoid a lot of
looping simply by adding a class to the parent element.

KEEPING IT SMOOTH: CSS TRANSITIONS

Animation in jQuery is easy indeed, and it looks very smooth. The reason is that jQuery
includes the easing equations,2 and now we have those in CSS, too. So, if you want to
expand a heading and change its background color from light-green to orange, you can
use the CSS snippet on the following page.3

2 smashed.by/easing

3 Check out this example in action: smashed.by/transition.

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

139

h1 {

 background: #c0ffee;

 line-height: 1em;

 padding: 0.5em 1em;

 -webkit-transition: 1s;

 -moz-transition: 1s;

 -ms-transition: 1s;

 -o-transition: 1s;

 transition: 1s;

}

h1:hover, h1:focus {

 background: goldenrod;

 line-height: 3em;

}

The best thing about this is that, by defining a time for the transition but not defining
which properties to change, we can make the browser move smoothly from one state
to another without having to know what future maintainers might want to change. In
this case, we are altering the background color and line height, but that could easily
change in the future. With jQuery, this would have meant a JavaScript rewrite. Annoy-
ing as it may be that we have to repeat the transition information for all of the browser
prefixes, we just have to live with this for now.

Another benefit is that these transitions are hardware-accelerated, which means
they will run more smoothly and use less battery on mobile devices. Not all browsers
do this yet (some need a 3-D transformation of 0 on the z-axis as a hack), but this will
surely become a standard. You can read more about CSS3 transitions in the chapter 4
by Lea Verou and David Storey.

CREATING FLUFF: CSS-GENERATED CONTENT

Sometimes designers need more HTML elements to add some styling (a situation we
ran into in the past with, say, rounded corners). Most of the time we use jQuery for
that. With CSS-generated content, that is no longer needed. We can generate elements
in CSS and style them all at once. Say you want all external links to have a red arrow
behind them:

CODE

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

140

a[href^="http"]:after {

 content: ' ';

 color: #c00;

}

This simple CSS code does the trick. We are specifying that for each link with an href
attribute value that begins with http, a text node—in this case, a red-colored arrow—
should be added to the link’s content.

DELEGATING EVENTS: REDUCING MANY TO ONE

One big feature of jQuery is that you can quickly iterate over many elements to change
things in them or assign event handlers. But this is not really needed. Event delega-
tion4 is an incredibly powerful tool when you are building Web interfaces. Essentially,
instead of assigning event listeners to every element within a main container element,
you assign one event handler to the main container and allow the browser to bubble
the events up.

This has a few advantages. For starters, you end up assigning many fewer event
handlers in the document, which is always good for memory consumption. More
interesting, though, is that you keep the event handling independent of the number of
elements it applies to. For example, if you have a to-do list and add new items to it, you
would not have to reassign the handlers at all. jQuery borrowed this concept when it
added the live event handler. However, many jQuery solutions will add live handlers
to ID selectors without any children—and by definition, an ID may appear only once in
a document and, thus, does not need any delegation.

USING THESE TECHNIQUES IN A FEW EXAMPLES

Let’s use some of these techniques in a few examples. We will start with a to-do list that
uses event delegation and generated content, then progress to a brochure website that
uses transitions, and then go wild at the end by using HTML5 canvas to create thumb-
nails in the browser.

4 smashed.by/sandbox	

CODE

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

141

EXAMPLE 1: A SIMPLE TO-DO LIST5

To create a to-do list for all of the browsers out there, we will need a server-side solu-
tion to grab the list items, store them in a database and display them as a list in the
browser. We won’t do that here; instead, we will only use a client-side solution, includ-
ing for storage of the data. But with a real product, you should have a server fallback.

Using the browser technology of today, we can do this in a few lines of code, without
any looping over elements. The HTML markup is pretty simple:

<ul id="todolist">

<form action="#" method="post">

 <div>

 <label for="newitem">Add item</label>

 <input type="text" name="newitem" id="newitem"

 placeholder="new item">

 <input type="submit" value="Add">

 </div>

</form>

The JavaScript code is nothing special, either:

var todo = document.querySelector('#todolist'),

 form = document.querySelector('form'),

 field = document.querySelector('#newitem');

form.addEventListener('submit', function(ev) {

 var text = field.value;

 if (text !== '') {

 todo.innerHTML += '' + text +'';

 field.value = '';

 field.focus();

 }

 ev.preventDefault();

}, false);

5 Check out this example in action: smashed.by/todolist.	

CODE

CODE

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

142

todo.addEventListener('click', function(ev) {

 var t = ev.target;

 if (t.tagName === 'LI') {

 t.parentNode.removeChild(t);

 };

 ev.preventDefault();

}, false);

In the code above, we start by grabbing the elements in the document that we want,
using querySelector. In this case, we will grab the list that we want to add elements
to, the form where new elements come from, and the field in which the new entry has
been inputted.

We then add an event listener to the form that reads out the value of the field and
checks whether a value was entered when the form was submitted. (This means that
the user can add new items by hitting “Enter,” in addition to clicking the button. Sadly,
too many jQuery solutions use click handlers on the button instead.) If there is some
content, we add a new item to the list using innerHTML. We then delete the current text
in the form field and put the cursor focus on it (to make it easy to add another item).

To enable the user to remove completed items from the list, we add a click handler
to the list, read out the target of the event, and compare its tagName to the li element.
If the target is a list element, we remove it using the old-school DOM removeChild()
method. This is what we have to do to create a to-do list with unlimited items using
event delegation. Nothing more, nothing less.

ADVANCED CSS SELECTORS AND GENERATED CONTENT FOR

STYLING

Now we want to give the list items alternating colors. We also want a check box to ap-
pear on hover, indicating that clicking on the list item will mark it as completed. To do
this, we need neither JavaScript nor images:

#todolist li {

 background: #eee;

 min-height: 20px;

 position: relative;

}

CODE

CODE

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

143

#todolist li:nth-child(2n) {

 background: #ccc;

}

#todolist li:hover:after {

 content: ' ';

 color: #060;

 position: absolute;

 right: 5px;

}

The nth-child(2n) selector tells the brows-
er to color every other row a darker gray
while leaving the other rows a lighter shade.
To show a check mark when the user hovers
over a list item, we use the :after selector
and create a UTF-8 check mark. Because
each list item is relatively positioned, any
absolutely positioned element will fall in-
side it, and thus the correct value will show
the green check mark within the box when
the user hovers over the list item.

ADDING TWO-STEP DELETION FOR LIST ITEMS

What if we wanted items in our list not only to be marked as completed but to be
deleted on a second click? Simple: we just add another state and use classes. When the
user clicks on an item the first time, a class named done is added, and when they click
it a second time, the item is removed. All we need to do is change the event handler:

todo.addEventListener('click', function(ev) {

 var t = ev.target;

 if (t.tagName === 'LI') {

 if (t.classList.contains('done')) {

 t.parentNode.removeChild(t);

Figure 5.1. Our to-do list with check marks.

CODE

CODE

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

144

 } else {

 t.classList.add('done');

 }

 };

 ev.preventDefault();

}, false);

If the clicked element is not assigned the class
done, then we add the class to the element. If it
is assigned the class, then we remove the ele-
ment. This takes care of the functionality, but it
also gives us an extra class to play with in our
CSS. We can use it to add a prompt for deletion
(an “x”) that appears when you hover over a
completed item:

#todolist li:hover:after,

#todolist li.done:after {

 content: ' ';

 color: #060;

 position: absolute;

 right: 5px;

}

#todolist li.done:hover:after {

 content: 'x';

 font-weight: bold;

 color: #c00;

 position: absolute;

 right: 5px;

}

Figure 5.2. To-do list with check marks
and deletion icons in the second state.

CODE

CODE

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

145

SELF-VALIDATING FORMS

As you may remember, we are checking for content in the field before generating a new
list item. Right now this is done in JavaScript, but if we stay true to the environment
we are working in, then we don’t need that. Adding a required attribute in the HTML
makes sure the browser validates the form field before sending the form:

<ul id="todolist">

<form action="#" method="post">

 <div>

 <label for="newitem">Add item</label>

 <input type="text" name="newitem" id="newitem"

 placeholder="new item" required>

 <input type="submit" value="Add">

 </div>

</form>

If the user tries to submit the form without entering any information, the submit han-
dler never gets fired. This means we can shorten the JavaScript code by yet another line:

form.addEventListener('submit', function(ev) {

 todo.innerHTML += '' + field.value + '';

 field.value = '';

 field.focus();

 ev.preventDefault();

}, false);

Falsely submitted form fields will now auto-
matically be flagged by the browser—some-
thing we had to do ourselves in the past (see
the image on the right). If the browser does
not support the required attribute, the form
gets submitted, which is what happens when
a user (or, in many cases, a hacker) has turned
off JavaScript anyway. Testing in JavaScript is
a measure of convenience, not security. You
will have to check server-side in any case.

Figure 5.3. Firefox showing a form-field
error and highlighting the field.

CODE

CODE

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

146

STORING THE STATE OF THE LIST

The normal procedure now would be to find a way to store the information in a da-
tabase and ask the user for credentials to make them storable. Using HTML5—and
assuming that this app will be used on one computer and not have to be synced across
multiple devices—we can use Local Storage to simply take a snapshot of the list every
time it changes.

Session and Local Storage are not HTML5 per se, but rather their own standard. For
large data sets to be stored in the client, there is IndexDB and Web SQL. However, Local
Storage is incredibly easy to use and more than enough for our needs.

To store the list’s state and load it when the user comes back to the page, all we have
to do is write two functions, storestate() and retrievestate():

function storestate() {

 localStorage.todolist = todo.innerHTML;

};

function retrievestate() {

 if (localStorage.todolist) {

 todo.innerHTML = localStorage.todolist;

 }

};

Then we need to call these function whenever the list is changed:

form.addEventListener('submit', function(ev) {

 todo.innerHTML += '' + field.value + '';

 field.value = '';

 field.focus();

 storestate();

 ev.preventDefault();

}, false);

CODE

CODE

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

147

todo.addEventListener('click', function(ev) {

 var t = ev.target;

 if (t.tagName === 'LI') {

 if (t.classList.contains('done')) {

 t.parentNode.removeChild(t);

 } else {

 t.classList.add('done');

 }

 storestate();

 };

 ev.preventDefault();

}, false);

We retrieve the data when the page is loaded again:

document.addEventListener('DOMContentLoaded', retrievestate,

false);

That’s it! Caching whole interfaces in Local Storage may seem like a dirty hack, but
nothing is unsavory about it. Because HTML is not too verbose a data format and we
have 5 MB of storage across browsers to work with, this is a simple solution to a com-
mon problem.

EXAMPLE 2: ANIMATED PAGE ELEMENTS USING CSS36

Let’s take another quick look at the trick of assigning classes and event delegation. This
time, we will play with CSS and JavaScript to animate parts of a website without any
library or animation tool.

Take the following website, which I whipped up for my favourite café (where I
am writing this right now). Without JavaScript, it would look something like the
image on the next page:

6 Check out this example in action: smashed.by/cafevintage.

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

148

We have some headings, some images and accompanying descriptions on a very long
page—that’s all. The HTML is very simple: a navigation menu pointing at targets in the
document:

Figure 5.4. The plain-vanilla Cafe Vintage website, showing all of the
sections one after the other.

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

149

<header>

 <h1>Cafe Vintage</h1>

 <p>88 Mountgrove Road, London N5 2LT, England</p>

 <nav>

 The Cafe

 Fashion

 Food

 Gifts

 </nav>

</header>

<section>

 <article id="cafe">[…]</article>

 <article id="fashion">[…]</article>

 <article id="food">[…]</article>

 <article id="gifts">[…]</article>

</section>

<aside>

 <p>Opening hours:</p>

 […]

</aside>

<footer>

 <p>© 2012 Cafe Vintage and Chris Heilmann</p>

</footer>

This is old-school HTML with a few new semantic elements introduced by Ben Schwarz
in Chapter 3. It works in every browser, and there is a logical connection between the
navigation and the main content: the IDs.

When JavaScript is available, the page shows one section at a time. There is also an
animation to transition between the sections: the last page moves up and the new one
drops down, and the descriptions animate from right to left (see Figures 5.5-5.7.):

CODE

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

150

Figures 5.5-5.7. When JavaScript is available, the articles on the page animate when the
user clicks a navigation item.

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

151

To make this happen, all we need to do is add and remove some classes. The rest hap-
pens in the CSS. Here is the logic we are following:

•	Apply a class named js to the body, and hide all article elements in the CSS
with .js article {…} (in this case, positioning them absolutely and moving
them off screen).

•	Add a class to the user’s chosen article, named current, which is overridden in
the CSS with .js article.current {…}.

•	Add a class named current to the menu link that corresponds to the currently
visible article, to show the user where they are in the navigation.

First, we add a class named js to the body of the document. This enables us to define
styles for the non-JavaScript and JavaScript versions. Then we get the elements that we
need—in this case, we need the first article element and the first link, because they
will be enabled first by default.

document.body.classList.add('js');

var nav = document.querySelector('nav'),

 article = document.querySelector('article'),

 link = document.querySelector('nav a');

We set their classes to current:

link.classList.add('current');

article.classList.add('current');

The rest of the functionality is event delegation:

nav.addEventListener('click', function (ev) {

 var t = ev.target;

 if (t.tagName === 'A') {

 article.classList.remove('current');

 link.classList.remove('current');

 article = document.querySelector(t.getAttribute('href'));

 link = t;

CODE

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

152

 article.classList.add('current');

 link.classList.add('current');

 }

}, false);

Now we assign a click-event listener to the navigation, check that a link was clicked
and remove the current class from the link and from the article that was being shown.
We then reach the new article to be shown by reaching the href attribute of the link
that was clicked and then assign the current class to the new elements.

That is almost everything we need to do. One other use case to account for, though,
is of a user coming to the website via a link containing a hash (that is, arriving on an
article other than the default one); we would have to show the correct article in this
case. For this, we can use two selectors:

if (document.location.hash) {

 var cleanhash = document.location.hash.replace(/^#/, '');

 article = document.querySelector(document.location.hash);

 link = document.querySelector('nav a[href$=' + cleanhash + ']');

}

The CSS selector tests whether the link ends in the string that we give it.
The animation is done in CSS using transitions:

section {

 overflow: hidden;

 min-height: 340px;

 position: relative;

}

article {

 position: relative;

 height: 350px;

}

CODE

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

153

body.js article {

 width: 700px;

 position: absolute;

 top: -700px;

 -webkit-transition: 0.8s;

 -moz-transition: 0.8s;

 -ms-transition: 0.8s;

 -o-transition: 0.8s;

 transition: 0.8s;

}

body.js article.current {

 position: absolute;

 top: 0;

}

Here we are modifying the articles. We are just telling the browser to position them
relatively in the section when no JavaScript is available, and to position them abso-
lutely 700 pixels above the top of the container when JavaScript is available. Because
overflow: hidden is applied to the section, they will never show up.

When an article is the current one, the value of top is changed to 0, which moves
the article down from the top.

The paragraphs work the same way:

article p {

 position: absolute;

 left: 320px;

 width: 370px;

}

.js article p {

 left: 900px;

 opacity: 0;

 -webkit-transition: 1s ease 0.7s;

 -moz-transition: 1s ease 0.7s;

CODE

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

154

 -ms-transition: 1s ease 0.7s;

 -o-transition: 1s ease 0.7s;

 transition: 1s ease 0.7s;

}

.js article.current p {

 position: absolute;

 left: 320px;

 width: 370px;

 opacity: 1;

}

In this instance, we create a 1-second transition with 0.7 seconds delay. Notice that we
are animating both left and opacity in one fell swoop, without having to do anything
in JavaScript.

EXAMPLE 3: THUMBNAIL GENERATION IN THE BROWSER7

To wrap this up, let’s go wild! One of the best things about HTML5 is the canvas ele-
ment. It might seem merely like an element to be painted on (and seemingly even

7 Check out this example in action: smashed.by/thumbnails.	

Figure 5.8. Drag and drop the images by using canvas and FileReader.

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

155

pointless without JavaScript), but it is a powerful tool to read and manipulate image
and video data, too. Together with the FileReader and Drag and Drop functionality of
modern browsers, we can really go to town. Why don’t we generate thumbnails in the
browser?

Most content management and blog systems have file uploaders to create thumb-
nails from images, so let’s use them as our fallback (again, we won’t go into the server
code here):

<section>

 <form>

 <label for="upload">Pick image</label>

 <input type="file" id=”upload" name="upload">

 <input type="submit" value="Make it so!">

 </form>

</section>

<output><p>Thumbnails</p></output>

Let’s add various styles. And, if the browser supports it, we will replace the form with a
message inviting the user to drag images onto the section:

Figure 5.9. Thumbnails generated.

CODE

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

156

if (window.FileReader && (('draggable' in document.body) ||

('ondragstart' in document.body && 'ondrop' in document.body))) {

 var s = document.querySelector('section'),

 o = document.querySelector('output'),

 c = document.createElement('canvas'),

 cx = c.getContext('2d'),

 thumbsize = 100;

 c.width = c.height = thumbsize;

 document.body.classList.add('dragdrop');

 s.innerHTML = 'Drop images here';

Here we are testing whether the browser supports FileReader and Drag and Drop (an-
noyingly, Safari still does not support the former, nor Opera the latter). If the browser
does support them, then we grab the elements that we need. We create a canvas ele-
ment and store its 2-D context in cx. We then define the thumbnails’ dimensions and
resize the canvas accordingly. Finally, we add a dragdrop class to allow for styling, and
replace the form with a message prompting users to drag images over.

Normally, when you drag an image onto a browser, the browser simply replaces the
current document with the image. We want to avoid this, which is why we prevent the
default behavior on dragover. We have also added a class to give the user an indication
that something is happening:

s.addEventListener('dragover', function (evt) {

 s.classList.add('active');

 evt.preventDefault();

}, false);

We remove the class if the drop is cancelled:

s.addEventListener('dragleave', function (evt) {

 s.classList.remove('active');

 evt.preventDefault();

}, false);

CODE

CODE

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

157

All of the other functionality happens in the drop handler:

s.addEventListener('drop', function (ev) {

 s.classList.remove('active');

 var files = ev.dataTransfer.files;

 if (files.length > 0) {

 var i = files.length;

 while (i--) {

 var file = files[i];

 if (file.type.indexOf('image') !== -1) {

 createthumb(file);

 }

 }

 }

 ev.preventDefault();

}, false);

The first thing we have done here is remove the active class, because we are done with
the drop. The drop event gives us a dataTransfer object that contains the files that
have been dropped. We check if at least one file was in the drop and then start iterat-
ing over all of them. (The while{} loop is a fancy way of doing a for{} loop without the
need to cache the length or use a second iterator variable.) We test whether the current
file is an image by testing its type, and then initiate and send it to the createthumb()
function. Finally, we prevent the default behavior of dropping in an image, and then
we are done.

function createthumb(file) {

 var reader = new FileReader();

 reader.readAsDataURL(file);

 reader.onload = function (ev) {

 var img = new Image();

 img.src = ev.target.result;

 img.onload = function() {

 cx.clearRect(0, 0, thumbsize, thumbsize);

CODE

CODE

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

158

 var thumbgeometry = resize(this.width, this.height,

 thumbsize, thumbsize);

 cx.drawImage(img, thumbgeometry.x, thumbgeometry.y,

 thumbgeometry.w, thumbgeometry.h);

 var thumb = new Image();

 thumb.src = c.toDataURL();

 o.appendChild(thumb);

 };

 };

}

The createthumb() function initiates a new FileReader and reads the image as a string
of data. If the reader successfully loads the file, then we create a new image in the
browser and set its src to the result of the FileReader transaction.

When the image has successfully loaded, we clear the canvas element using the
clearRect() method. This is required, otherwise we would create thumbnails that add on
to each other every time the function is called. Then we get the size of the thumbnail that
we want to generate from the resize() function and call the drawImage method of the
canvas. This method takes five parameters: the image to get the pixel information from,
the coordinates of the top-left corner to draw the image from, and the width and height.
We then create a new image, grab the pixel content of the canvas with the toDataURL()
method, and add the new image to the outputted element.

function resize(imagewidth, imageheight, thumbwidth, thumbheight)

{

 var w = 0, h = 0, x = 0, y = 0,

 widthratio = imagewidth / thumbwidth,

 heightratio = imageheight / thumbheight,

 maxratio = Math.max(widthratio, heightratio);

 if (maxratio > 1) {

 w = imagewidth / maxratio;

 h = imageheight / maxratio;

 } else {

 w = imagewidth;

 h = imageheight;

 }

CODE

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

159

 x = (thumbwidth - w) / 2;

 y = (thumbheight - h) / 2;

 return { w:w, h:h, x:x, y:y };

};

The resize function is a mathematical helper to resize an image of a certain width and
height to perfectly fit into a smaller one. Nothing magical here—just practical for this
case. And with that, we have thumbnails in the browser!

Summary
I hope I was able to convince you that a lot of great stuff is native to browsers these
days. Of course, not all browsers support these features yet, but at least all of the
vendors are working together on the standards, and we are not in the situation of the
first browsers war, when innovation happened in the dark. By mixing and matching
the different technologies of the Web (HTML, CSS, JavaScript), we can produce quite
an amazing amount of interaction in a few lines of code. All we need to do is use what
browsers are giving us.

THE RIGHT TECHNOLOGY FOR THE JOB

The interplay of CSS transitions, transformations, animations and JavaScript is power-
ful and something we should be using much more. Right now there seems to be a battle
between people who do everything with jQuery or JavaScript and those who use CSS
exclusively. This does not help our users, and it keeps us from writing concise, effective
solutions. A good Web developer plays all technologies to their strengths and is agnos-
tic about them. There is nothing clever about using one technology for everything and
then leaving the product to work in only one browser or on one device.

If you need all of your features to be supported in old browsers, use a library such as
jQuery. You can also find patches for old browsers in the form of polyfills. But in gen-
eral, let’s stop trying to make outdated technology support interactions that are meant
for newer technology. Just because IE 6 does not transition smoothly from one state
to another, no one will be blocked from the using the product—and that is the most
important feature of a good Web product.

CHAPTER 05 JavaScript Rediscovered: Tricks to Replace Complex jQuery

160

EVERYTHING COUNTS IN LARGE AMOUNTS

As Web developers, we always complain that technology is falling behind our needs:
people are using browsers that are far too outdated, and the browsers are not deliver-
ing what we need. The main reason why people have outdated browsers is that, in the
past, developers like us built only for those browsers because they were the state of the
art and those developers assumed that nothing better would come along.

Browser vendors do not add every feature that developers want to see because new
technology is not being implemented widely enough. Complaining that something does
not work is not enough. Browser vendors need this technology to be used in the wild
and to get feedback on how it performs. If the only feedback they get is, “Why do you
not support feature X,” they may always answer, “Because no one uses it.”

The biggest example of this is the new semantic elements of HTML5. We cannot
complain about the lack of support for the outline algorithm in browsers if we do not
use the right elements and then give browser vendors feedback on what works and
what fails. Every browser vendor out there has feedback mechanisms in place. It is up
to us as developers to give them real-world examples to fix, rather than wait for the
perfect implementation.

EMBRACING THE FUTURE AND KEEPING IT SAFE AT ONCE

We should embrace new technology and use it whenever we can. Let’s not think that
we have to wait until a certain technology is stable and supported by all browsers be-
fore we use it. If we do not test in the wild the technology being defined by the working
groups of the WHATWG and W3C, we will never get anywhere.

And yet, we should not force technology on people. A message like, “Upgrade to
browser X in order to see this content,” is incredibly frustrating if the user does not
have permission to download a new browser onto their machine or they are on a slow
connection. Instead of building rocket packs, let’s build escalators, because escalators
enable people to reach higher levels conveniently, but they also work as stairs when
there is an electricity outage or mechanical failure.

JavaScript Rediscovered: Tricks to Replace Complex jQuery CHAPTER 05

161

About the Author
Christian Heilmann (1975) was born in Schweinfurt, Bavaria, and has
a diploma in German, English, history and astronomy. His motto is,
“Start something and play with it; if you don’t want to play with it, stop
doing it.” Christian currently lives in North London, a mixing pot of
people from many cool places. He works to bring technology to peo-
ple and people to technology, and when he’s not busy working, films
are his diversion of choice. Blue and green are his favorite colors,
and since he’s rarely at home, his only pets are a lot of rubber ducks.
Christian’s message to readers is to stay hungry and stay inquisitive;
something new is always around the corner.

About the Reviewer
Paul Irish (1982) was born in Pittsfield, Massachusetts, and gradu-
ated from Worcester Polytechnic Institute with a BS in technical
communication. He has been a professional front-end developer
for seven years and in the last two years has been teaching other
developers full time how to make the Web more amazing.

Paul lives in a studio apartment in the Mission district in San
Francisco, and in his free time he loves to listen to eclectic music
and go to pre-Prohibition cocktails. The most important lesson he
has learned in his career is to inject whimsy into all of the hard work.
As personal advice to readers, Paul recommends, “Publish what
you learn.” These are the words of an expert, so it’s worth a try. 

Techniques for Building
Better User Experiences

Written by Dmitry Fadeyev
Reviewed by Joshua Porter

CHAPTER ?

Techniques for Building Better User Experiences CHAPTER 06

CHAPTER 06 Techniques for Building Better User Experiences

164

he design and usability of websites and apps are getting better. As more
businesses and software move online, competition heats up, and so companies
start seeking every competitive edge to stay ahead. If you are solving a problem

that has not been solved yet, you can get away with a scrappy website; but when you’re
fighting off twenty competitors, the usability and user experience of your product
begins to matter a whole lot more.

User Experience (UX) is a hot buzzword these days, so much so that there are full-
time job positions that include this word in the title. It’s not a word that I like using
because its meaning isn’t particularly clear; nevertheless, it’s popular because what
it does stand for is very important. Simply put, UX means good design. Design not in
the sense of superficial eye candy, but in the
sense of how everything fits together, how the
product works and how well it satisfies your
users’ expectations.

The aim of design is not to decorate but to
solve problems: whether that means getting
more sign-ups, inviting users to post more
content or making an interface easier and
faster to use—this is the sort of design that
will ultimately end up delivering a great user
experience. Looks matter, too, of course, and they will directly influence the experi-
ence of using your product, but it’s important not to surrender all your energy into
designing the prettiest interface while leaving the rest—things like copywriting, flow,
content and usability—without the due attention they deserve.

This chapter will arm you with new and powerful UX techniques that you can apply
to your own products and websites to get an edge over your competition by delivering
an experience your users will truly love. The chapter is split into four sections. We’ll
start by looking at how you can improve the sign-up process and forms, follow on with
some newer and more experimental techniques, cover ideas on how you can improve
customer service and finally discuss some design techniques you may wish to avoid.

T

“If we want users to like

our software, we should

design it to behave like a

likeable person.”
— Alan Cooper

Techniques for Building Better User Experiences CHAPTER 06

165

Improving Sign-Ups and Forms
It is only when real people begin using you product will you know whether or not
you’re on the right track with your solution and your feature set. Matt Mullenweg,
the founding developer of WordPress, makes a beautiful analogy between usage and
oxygen: “You can never fully anticipate how an audience is going to react to something
you’ve created until it’s out there. That means
every moment you’re working on something
without it being in the public it’s actually
dying, deprived of the oxygen of the real
world.” This section features a collection of
techniques to help you gather initial product
interest and build a solid sign-up process
once you’ve launched.

Figure 6.1. SquidChef’s “Coming soon” page.

“I never design a building

before I’ve seen the site

and met the people who

will be using it.”
— Frank Lloyd Wright

CHAPTER 06 Techniques for Building Better User Experiences

166

HIDDEN SURVEY

The first thing any great product needs is users, and you can start getting them even if
you haven’t yet launched your product—or even begun creating it. You may be familiar
with the “Coming soon” page. It’s a page designed to promote a new product or service
that’s yet to launch. The page highlights the features and benefits of the product, and
asks for your email if you’re interested in being notified of the launch.

These landing pages are a great tool to measure demand for your product, especially
if you haven’t yet started building it. The number of sign-ups will tell you whether
there is a market for your product, and if there is, whether it’s big enough to pursue.
The quality of the leads will depend on how much information is provided on the land-
ing page. Giving more information about what your product will solve, as well as the
potential pricing options, will help you get emails from people who are really inter-
ested in your product, as opposed to being merely curious.

Here’s a way to take this landing page a step further so that it not only generates
leads, but gives you valuable information on what features you should focus on. Mono-
task used this clever technique on its coming-soon page. When someone interested in
the product filled in their email to get on the launch notification list, a short survey
titled “Help Us Build Something You Want” would appear. This hidden survey asked a
few questions, such as what methods the person used at that moment to solve the prob-
lem, and how much they would be willing to pay for the app.

Hiding the survey be-
hind an email-capture form
serves two purposes. First,
the initial call to action must
be clear and simple—the only
thing the user should have to
provide is their email address.
Showing the form right away
would detract from that action
and clutter the page. Secondly,
only people who have shown
interest in your product will
be shown the survey, and
so the signal-to-noise ratio
improves. Using a survey like

Figure 6.2. Monotask’s email-capture form.

Techniques for Building Better User Experiences CHAPTER 06

167

this is not only a great way to
collect data to help you build
something people want, but
can also arm you with the
common pain points you’re
solving and the objections
your users may have about
using your product. Once you
launch, addressing these is-
sues on your sales pages will
help strengthen them.

BURY THE SIGN-UP

There is a UX myth that says
that you should present your
sign-up link or your sign-up
form right away—that is, at
the top of your landing page.
The logic behind this myth
comes from the idea of re-
moving all possible barriers
from your sign-up process.
The flaw in this logic, though,
lies in what gets classified as
a barrier—in this case, it is
everything other than the
sign-up form.

The sign-up form is not
the only thing that your
visitors need to sign up. Yes,
the sign-up link and form are
essential for the process, but
before people sign up, two
more things need to happen. First, the visitor must clearly know what they’re going
to get once they sign up. Secondly, they must want it. This is where good copywriting

Figure 6.3. Submitting your email address exposed a
short survey.

CHAPTER 06 Techniques for Building Better User Experiences

168

comes in. Unless the visitor already knows about your product from external sources,
they will need to be educated about what it does and, more importantly, why they
should want it.

For example, when ZURB designed the home page for one of its clients and moved
the sign-up button to the bottom of the page, they discovered that conversions went up
350%1—a massive improvement. Vendio had a sign-up form as the first item on one of
its pages, pushing the copy aside. In its redesign, they moved the form to its own page,
leaving a link to it on the home page. The result? Conversions went up 60%.2

People will not sign up for anything until they are convinced of its merit, and that
certainly will not happen when the first thing on the page is a sign-up form or link. In-
stead, move the sign-up form down the page—or, more accurately, move your copy up
the page to take the front row. When people have read your message and are ready to
act, they’ll do so.

1 ZURB, “Why Burying Sign Up Buttons Helps Get More Sign Ups”, smashed.by/signupbuttons.
2 VWO blog, “Signups increased by 60% after actually removing the signup form,” smashed.by/abtesting.

Figure 6.4. The Vendio website, with the sign-up form right on the home page
(initial version).

Techniques for Building Better User Experiences CHAPTER 06

169

GRADUAL ENGAGEMENT

Another UX myth is making the sign-up form as short as possible. In reality, this may
or may not be important. What’s important is what actually happens during the sign-up
process and whether it benefits the user’s experience. In other words, will the extra
step you want to introduce add value for the user?

For example, when Twitter redesigned its sign-up form, it introduced an extra step
to the process. Initially, Twitter would try and connect to the visitor’s email address to
search for friends who are already using Twitter. If the user didn’t want to give their
email details to Twitter, they would be directed to an empty new profile page—not
exactly an ideal starting experience.

The redesign added a step for suggestions. The user can now select topics that inter-
est them, and Twitter will suggest popular accounts to follow. This way, even if the user
doesn’t find any friends, they will know of interesting people to follow, and the new
profile page will start showing those people’s tweets right away. Did the redesign work?
It did: conversions went up 29%.3

3 Wroblewski, Luke. “Gradual Engagement Boosts Twitter Sign-Ups by 29%,” smashed.by/twsignups.

Figure 6.5. Vendio with the sign-up form moved to its own page (final version).

CHAPTER 06 Techniques for Building Better User Experiences

170

Why did it work? The extra step enabled users to engage more meaningfully with the
service. Instead of starting you off with a blank slate, Twitter helps you find people
to follow right away. Even if you don’t know exactly who to follow, you can search
through most popular profiles by topic; if you’re interested in Web design, for example,
you can search for that term right in the sign-up process and get a list of accounts to
follow. This makes the service useful right from the start, and deepens engagement
during the sign-up process as people get to customize their new account.

PROGRESSIVE SIGN-UP

While lengthening the sign-up process is fine if it makes sense for the user, you could
also shorten it, and in some cases even get rid of it altogether during the initial interac-
tion. One of the best ways of educating your potential users about what your product
does and how it works is to get them to try it. In some cases, you do not need the user
to go through a sign-up form before you can show them your product. If that’s the case,
why not let the user try it right away?

QuietWrite does this. The first thing the visitor sees is a landing page that briefly
explains what the product does. If they’re interested, they can click a link and start us-
ing it. If they like what they see, they can take the next step of setting a user name and
password. QuietWrite uses cookies to track the user during the initial interaction, so
that even if the person does not set a user name right away, they can continue working.
There is an incentive to setting a user name, though, particularly to access the app from
multiple computers. The user then has a good reason to proceed to the sign-up area.

Figure 6.6. Twitter helps you find people to follow during the sign-up process.

Techniques for Building Better User Experiences CHAPTER 06

171

QuietWrite segments the process even further by
asking for additional information later. For ex-
ample, to publish your writings on QuietWrite,
you need to pick a display name. This information
wasn’t necessary to save your account, so it’s asked
later, when it’s actually needed.

Stripe, a payment processor, is another good
example of this. On its sign-up page is a “Skip this
step” link, which sends you directly to the app. You
can look around the app and then get a user name
and password if you decide to start using it. Show-
ing your potential customers what they’ll be using
before they sign up is another way to help sell the
product.

On contrast, some services will always need your details before they can be useful.
Social networks, such as Facebook, are based around social interaction, which cannot
happen unless you identify yourself. Facebook gets you past the sign-up stage right
away by putting the form on their landing page. This contradicts the point made earlier
about burying the sign-up form, but it works here because Facebook’s brand recogni-
tion is so high that you can expect people coming to the page to already know about the

Figure 6.7. The Stripe sign-up
screen lets you “skip this step.”

Figure 6.8. You can skip right to the Stripe dashboard without signing up. The “Save
account” link at the top lets you sign up later.

CHAPTER 06 Techniques for Building Better User Experiences

172

service and what it does. One interesting
element of Facebook’s form is that the user is
asked to confirm their email address, rather
than their password. This makes sense
because if you forget your password, a reset
link can always be sent by email, but if your
email incorrect, then logging back in would
be a whole lot harder.

ACCORDION FORMS

Whenever you have a very long form, the
question may arise of whether to split it into
multiple pages to make it more manageable.
Showing the long form on one page makes
the task look daunting to the user, but so is
introducing additional steps to the process.
There’s a technique that solves this: the accordion form.

Accordion forms are forms that are made up of multiple sections, each with its own
sub-heading—all of them placed on a single page. The section that the user is currently
filling in is visible, while the rest are hidden with only their sub-headings showing.
Once the user is ready to move onto the next section, the next section expands and the
last collapses, hence the name.

How well does this technique work in practice? Etre, a London-based usability
firm, ran a test on accordion forms.4 The test included 24 average users with typical
e-commerce experience and ages ranging from 19 to 48. They tested two variations of
the form against multi-page layouts and a single page layout with everything shown at
once. One variation of the accordion form required the user to click on the next head-
ing to expand it, while the other had a button at the end of each section.

What they found was that the forms really didn’t differ much in terms of accu-
racy rates or user satisfaction, but did differ in the speeds at which users filled out
the forms. Surprisingly, the accordion form performed the fastest, even faster than a
single page form that displayed everything at once. This means that if your content is
time-sensitive—if you are running an auction, for example—the accordion form may
be a good choice.

4 Wroblewski, Luke. “Testing Accordion Forms,” smashed.by/testing-forms.

Figure 6.9. Facebook’s sign-up form with
an email address confirmation.

Techniques for Building Better User Experiences CHAPTER 06

173

The variation of the accordion form that performed best in Etre’s test was the one with
a button at the bottom of each section, not the one that required people to click on the
headings to expand them. When people fill out forms, they look for a “Submit” button,
and clickable headings stray too far away from that convention to make sense. So if
you’re going to use the accordion form, make sure to put a “Submit” button at the bot-
tom of each section.

THE GENDER QUESTION

Sometimes a Web service needs to know a user’s gender in order to enable whatever
functionality depends on it. Your users may not want to reveal this information and
may wonder why you need to know it at all. Worse, they may suspect that you’ll want to
sell it off to advertisers. On the other hand, our actual use may be genuine and harm-
less. For example, we may want this information to help us better construct status

Figure 6.10. Apple uses the accordion form for their online store checkout. Note that the
placement of the “Continue” button is placed inside each section, not at the bottom.

CHAPTER 06 Techniques for Building Better User Experiences

174

updates on our social app, e.g. “John has updated his profile,” or “Jane has uploaded a
new photo to her holiday album.”

The team at Bagcheck has come up with a great way to ask this question. Instead of
asking the user whether they’re male or female, it asks them to pick a preferred posses-
sive pronoun: “his”, “her” or “their.” This approach makes it clear what you want to use
the information for and allows people to opt out by picking the gender neutral “their.”

GOOD DEFAULTS

When your users are entering new data, it may be a good idea to present them with
some typical default values. For example, Etsy tries to guess your regional settings
when you first arrive on its website. A box pops up at the bottom of the screen asking
you to verify your location, which it guesses based on the language settings of your
system. Your selection affects things such as the currency used to display item prices.
While this guess may work in most cases, Etsy understands that it may still make a
mistake and so a verification message is used.

Another good example would be Homesite, a home insurance website that prefills
some common values in its forms. On the page for property information, default values
are filled in for the property coverage deductible, personal liability and so on. Using de-
faults in this way won’t work everywhere. For example, when adding a new event on a

Figure 6.11. The gender question on the Bagcheck sign-up form.

Techniques for Building Better User Experiences CHAPTER 06

175

calendar, you really want to see an empty form because every event is different. On the
other hand, if there is a pattern in how the user may want to use your product, smart
defaults can be a good way to simplify their experience.

UI DESIGN IS COPYWRITING

One of the most important aspects of any visual interface is the copy—that is, the
labels on buttons and forms, the instruction dialogs, the headings, the error messages,
and so on. Your copy is the most direct way of communicating with your user, and
while advice is often given to cut copy to the bare minimum because people don’t read,
we should never do this at the expense of clarity. Additionally, the copy must always be
written for your users, not for you; a distinction that is easy to forget when you spend a
lot of time using your own product and so already know how everything works.

Context can shift the meaning of words. Baymard Institute ran a usability study that
found that the word ‘continue’ in an e-commerce interface confused 3 out of 10 testers.5

5 The Baymard Institute. “Contextual Words Like ‘Continue’ are Usability Poison,” smashed.by/poison.

Figure 6.12. Etsy tries to guess your location based on the language settings of your system.

Figure 6.13. Amazon uses the label “Proceed to checkout” for its check-out button.

CHAPTER 06 Techniques for Building Better User Experiences

176

Why did this happen? Context is key. To somebody who has added an item to their
shopping cart and wants to proceed to checkout, the word “continue” means “continue
to checkout.” To someone else who wants to keep shopping, the same word means “con-
tinue shopping.” Whenever a label is tied to context, make sure to clarify as much as
possible. So, instead of “continue,” use more descriptive labels like “continue shopping”
or “continue to checkout.” Clarity trumps brevity.

Here’s another example: HubSpot had a label on their domain setup screen named
“Add domain.” This was confusing. What the developers of HubSpot meant was that
this interface could be used by customers to add an existing domain to their account.
What the customers actually thought it meant
was that the software was asking them to cre-
ate a new domain—something they didn’t want
to do since they already had one. The verb “add”
was causing confusion. HubSpot changed the
label to “Connect your domain,” and the confu-
sion went away. The original label made sense to
HubSpot’s developers using the product because
they thought about the problem from their own
perspective, but this perspective was not shared
by the customers. Write for someone encounter-
ing your product for the first time, and double-
check that the labels you want to use do not have
other meanings.

EXTRA ATTENTION TO DETAIL

By now we’re all used to forms that use JavaScript to validate data on the fly. Square, a
new payment processor that lets you use your phone as a card reader, goes beyond this
by adding other dynamic elements to make the experience of interacting with the app
even more polished.

When you’re filling in your card details using the Square app, the card icon will
change its cover image according to whatever card you have entered (VISA, Master-
Card, etc.). When the card’s number has been filled in, all but the last four digits are
faded out. The little card icon will then flip over, and the area where you can find the
card verification value (CVV) is highlighted.

Figure 6.14. Target drops the verb
and simply uses the word “checkout.”

Techniques for Building Better User Experiences CHAPTER 06

177

Square has plenty more touches like this. When an American Express number is typed
in, the grouping changes from 4 digits to 4, 6 and 5, reflecting the number structure
on the card you’re using. Since the CVV for American Express is on the front, the little
card icon won’t flip around but will instead show you where to find it on the front of
your card. If you enter an incorrect
number of CVV digits, the field will
shake and turn red to tell you it’s not
right. Also, entering an incorrect
expiration date is impossible—the
interface simply won’t let you do it.

This attention to detail is what
contributes to making products that
people love using. It guides the user
through the form and nudges them in the right direction when they stray aside. The
different use cases are also covered, for example, taking into account that the CVV on
a particular card may be on the front and not on the back. These use cases have been
given their own implementation to ensure that everyone gets the same experience.

New and Experimental Techniques

This quote from Jobs goes well with the even more famous one by Henry Ford: “If I’d
asked my customers what they wanted, they’d have said a faster horse.” Innovation
happens when you try new things and don’t get stuck in the old ways of approaching
a given problem. Accepted design patterns and best practices tell us what works well,
but they don’t tell us how to build something that’s even better. Simply following the
patterns will ensure you have a solid product, but it will mean that you’ll always be one
step behind those companies and designers who come up with novel solutions to see if
they work better.

Figure 6.15. Square hides the card’s full number
and highlights the location of the CVV in the icon.

“It’s really hard to design products by focus groups. A lot of times,

people don’t know what they want until you show it to them.”
— Steve Jobs

CHAPTER 06 Techniques for Building Better User Experiences

178

Sometimes we have to break rules and experiment. For example, during the beta stages
of their Lion operating system, Apple tried a new button design for a radio button style
control, where only one item could be selected at one time, e.g. picking the calendar
view mode, which could either be day, week, month or year. The new design highlight-
ed the currently selected item, and made the rest look depressed. It was meant to look
like the button could be moved around left and right to pick the desired mode.

It didn’t work though. Many users didn’t take well to the change,6 and Apple went
back to the previous design, in which the buttons actually looked like buttons, and the
currently selected one was depressed. The experiment wasn’t a failure because it gave
the designers valuable information
on what works best in that scenario,
and the better solution was ultimately
shipped. If the new solution you
come up with doesn’t follow accepted
patterns but happens to solve the
problem better, then it will inevitably
become a recommended pattern.

In this section, we’ll cover experi-
mental UX techniques. They may or
may not work for your products, but
they should give you fresh ideas on
how you can push your designs to the
next level.

INTERACTIVE STORYTELLING

Storytelling has always been a great way to introduce ideas and products. The browser
isn’t limited to just showing text and video. We can go further and create interactive
experiences that allow visitors take part in the story we want to tell. Creating an inter-
active story isn’t easy, but the results can engage the user on a much deeper level than
the passive skimming we’re used to.

When Nerd Communications was developing Ben the Bodyguard app, it designed
its website as an interactive story. The website featured a top-down view of a dark,
dangerous street. In the center was Ben the Bodyguard—the app represented as a char-
acter. As you scrolled down the page, Ben would begin to walk with you, and as you

6 Apple Insider, “Inside Mac OS X 10.7: Lion,” smashed.by/appinside.

Figure 6.16. Apple’s button style experiment had
a selector that looked like a slider.

Figure 6.17. Apple ultimately went back to a clear-
er solution, with all buttons looking like buttons,
and the currently selected item clearly active.

Techniques for Building Better User Experiences CHAPTER 06

179

scrolled further, he would reveal the concept of the app and why you may need it. The
makers of the app managed to turn your typical bullet list of features and benefits into
an interactive and engaging experience.

Spent, a donation website for the Urban Ministries of Durham, demonstrates this,
too. Asking for donations isn’t easy, so why not turn it into a game? Spent is a Web-based
game in which you play the part of a typical unemployed American. The objective is to
survive a month without running out of money. Along the way, you have to find a job,
look after you kid and juggle a variety of mini crises. The successful outcome is then to
make the player emphasize more with the jobless and give a donation at the end of the
game.

Both of these websites are not only great ways to introduce their respective con-
cepts and engage their visitors, but also great marketing tools. Both Ben the Bodyguard
and Spent went viral when they were first released. People shared them because the

Figure 6.18. Ben the Bodyguard guides you on an interactive walk through The Mean
Streets.

CHAPTER 06 Techniques for Building Better User Experiences

180

sites were interesting enough to view on their own, even if you didn’t end up buying
the app or donating. Now, of course, the success of these designs will ultimately be
judged by whether people purchase the app or donate, but if you know that a large por-
tion of your audience spends a lot of time on social networks, then a viral quality that
attracts this sort of traffic may work for you.

COMPLETENESS METER

Do you want your users to take optional action, such as add additional information to
their user profile? Show them that there are still things left to do with a completeness
meter. The completeness meter is just like a progress bar; but unlike a typical progress
bar, which shows the progress of an action, a completeness meter focuses on how much
still needs to be done by taking additional actions. It doesn’t have to be a bar, but it
does need to have a way of indicating progress. If the user doesn’t like to leave things
undone, they will be compelled to go through the list.

For example, Klout has a completeness meter under the headline “Connect.” It’s just
a plain text to-do list that invites you to take various actions, such as connecting your
Klout account with Twitter and Facebook, following Klout on Twitter, sharing your

Figure 6.19. Make it to the end of the month without running out of money in Spent.

Techniques for Building Better User Experiences CHAPTER 06

181

Klout score, and so on. As you do each of the
actions, they get crossed off the list. Another
example would be Groupon. Groupon’s com-
pleteness meter in the sidebar is a to-do list
just like Klout’s, but with a progress bar at the
top that fills up as more items get crossed off.

Why does this work? There are two psy-
chological drivers at play here. The first is cu-
riosity. People want to find out what happens
when the meter reaches 100%. Will there be
some reward at the end? The second driver is
the feedback loop. When the user completes
a task, it gets checked off and the meter goes
up. This establishes a clear goal and gives the
user directions on what to do next.

REAL TIME

Real-time updates have always been possible, but a new technology makes them even
easier now. WebSockets is an HTML5 feature that lets you keep an interactive com-
munication session open on the server without having to poll it every few seconds
and wait for a reply. What this really does is make it much easier to provide real-time
experiences that run faster and don’t flood your server with requests.

Bagcheck uses WebSockets to provide real-time updates on the views counter on each
user’s bag page. The counter shows the number of views a page has, and will update
instantly whenever someone else opens that page. Bagcheck also displays real-time
notification messages whenever a person you follow creates, likes or comments on
something.

Figure 6.20. Klout’s completeness me-
ter invites users to become active and
check off items on their to-do list.

Figure 6.21. Real-time notifications in Bagcheck.

CHAPTER 06 Techniques for Building Better User Experiences

182

The app has even more real-time stuff; for example, whenever someone comments on
an item, the comment appears instantly.

WebSockets opens up new ground for Web apps and websites to explore. Real-time
analytics and games are the obvious uses, but as Bagcheck shows, it can also be applied
to interface components that we’re used to seeing as static, such as a list of comments.
But just because we can implement real time doesn’t mean we should, because the obvi-
ous risk is that this can distract users who do not expect the page to change.

COUNTRY SELECTOR

Country selectors tend to be drop-down
menus that open up a page-tall list of
countries that you then have to scroll
through to get to the one you want to
pick. Can we do better? Yes. Christian
Holst and Jamie Appleseed from Bay-
mard Institute managed to redesign
the country selector to make the
process painless.7

The idea is to use a live search field for country selection, so when the user begins to
type in the name of their country, a search would be run and the list of matches would
drop down below the field. The top match will be preselected, so the user simply has to
hit the “Enter” key once there is a correct match to fill in the rest of the country’s name.
The user already knows what they want, so typing the first letters of the country’s name
is much faster than scrolling through a list that may include over a hundred items.

This implementation works because it tackles three underlying issues. First, you
have to account for typos and sequencing; the user may type the words in the wrong
order or spell them incorrectly. Secondly, some countries go by multiple names. For
example, another name for the Netherlands is Holland, and so people typing in “Hol-
land” should expect to get a correct match. Same thing with typing in “America” instead
of “United States.”

Finally, some countries are probably more common than others among your user
base, so “United Sates” should likely be the first match when someone starts typing
“United,” and not “United Arab Emirates”—unless of course, many of your users do live
in the United Arab Emirates.

7 Christian Holst. “Redesigning The Country Selector,” smashed.by/selector.

Figure 6.22. The country selector in action.

Techniques for Building Better User Experiences CHAPTER 06

183

The live search text box can be used for things other than countries, but the three is-
sues I’ve just covered will still remain so it’s important they’re tackled to ensure that
your implementation is solid.

PROGRESSIVE LOG-IN

Many websites today use third-party vendors to authorize user log-ins, i.e. people who
already have a Google or a Facebook account—or any other service that allows this—
can use those services to identify and authorize them on other websites.

Sometimes several log-in provid-
ers are used at once, which can lead to
people forgetting which one they used
to sign up with.

The team at Bagcheck has experi-
mented with a progressive log-in pro-
cess that solves this problem. Instead
of your typical log-in form with the
two fields for your user name and
password, as well as the third party
log-in buttons, Bagcheck shows just a
single text field for the person’s name
(or email address). As the user starts
typing, a live search is run to find
the person’s account. If the account
is found, further log-in options are
shown, including the button for the
third-party log-in vendor that the
person used to register with Bag-
check, allowing them to now sign in.

This approach eliminates the
problem of people forgetting which third party log-in vendor they’ve used to sign up for
the site. However, two caveats apply. First, people can no longer sign in with one click—
something they could do when all the log-in options were shown right away. Secondly,
the live search finds other people who have signed up to Bagcheck. Because Bagcheck
accounts are public by the nature of the service, showing other people is fine here, but
this will not work for services that need to keep accounts private.

Figure 6.23. Typing your name on the log-in page
initiates a search of Bagcheck’s user base.

Figure 6.24. Once you’ve found your account, you
will see the options you can use to sign in.

CHAPTER 06 Techniques for Building Better User Experiences

184

RESPONSIVE MOBILE UI

Web-based mobile interfaces bring up a number
of usability challenges. A fingertip is less accurate
than a mouse cursor, so it’s often unclear whether
you’ve pressed the right link or not. Slow connec-
tion speeds make it difficult to know whether a
page is loading or stuck. If data is cached, it’s not
obvious if and when it will be refreshed, which
is particularly a problem if the user is looking for
new content.

When 37signals set out to design the Web-based
mobile version of its Basecamp project manage-
ment app, it sought to tackle these problems and
create an experience that rivalled that of a native
app. To handle touch, 37signals made sure that eve-
rything had a selected state, so that a button would
highlight instantly when touched, letting the user
know that their selection has been registered, and
that they had pressed the correct button.

When the app loads for the first time, it fetches
a lot of data that gets cached on the device. This
can take a while, so 37signals designed a special
loading screen for the first launch. The loading
screen counts the time it takes for the app to load,
and when that time passes a certain threshold, a
message pops up below to let the user know that
the app is still alive and loading. If the app takes
far too long to load, another message pops up to
give the user the option to try again or switch to
the desktop version of the app.

Because the app uses a lot of caching, the user
needs to know whether any given content shows the most recent data. Instead of re-
freshing the whole page when checking for new content, the app shows a spinning icon
in the top-right corner, which tells the user that Basecamp is communicating with the
server while allowing them to continue working.

Figure 6.25. If the initial loading
takes longer than normal, a mes-
sage will appear to let you know
that the app is still working.

Figure 6.26. An unobtrusive spin-
ning icon in the top-right corner tells
the user that the app is checking for
updates on the server.

Techniques for Building Better User Experiences CHAPTER 06

185

ICON MENUS

Icons are not only reserved for apps. You can use them in product selection menus on
e-commerce sites, too. For example, Bonlook, a vintage eyeglasses store, uses icons in
their drop-down menu to let visitors browse by the shape they want. Eyeglass shapes
are not easy to describe in words, but icons communicate them instantly.

Another example is Heppo.se, a Swedish shoe store. Here again, we’ll find a drop-down
menu that shows you the various types of shoes and boots you can buy.

Figure 6.27. Bonlook’s selector for eyeglasses.

Figure 6.28. Heppo.se shows an icon for every type of shoe they sell.

CHAPTER 06 Techniques for Building Better User Experiences

186

Each menu item is accompanied by an icon showing the shape of the shoe. The store also
sells scarves, hats, brushes and other items, each accompanied by its own little image.
Using icons in this way enables visitors to browse the store even if they do not speak
Swedish. This sort of interface really shines when an item comes in multiple varieties,
such as different shapes of boots, because the customer is able to scan and process the
options at a glance.

Customer Service Is UX
Tony Hsieh made Zappos a success story. Since joining Zappos as CEO in 2000, he has
doubled the company’s revenue every year, reaching $1 billion in 2009. Zappos is an
online shoe store, but the interesting thing here is that Hsieh wasn’t even interested in
shoes. What he was interested in was customer service, and that passion for providing
a great customer experience was what really made the company so successful.

When we talk about UX, we normally
think of user interfaces. But your users
interact with more than just the user inter-
face: they read through your documentation
and communicate with your support staff.
All of this contributes to the overall user ex-
perience, and making sure things run well
here will help make your customers happy.
Below are some ideas on how to improve
the customer service side of things, from
innovating your support to providing better
documentation.

SMILEY SUPPORT

How does one visualize the quality of support a company provides? 37signals designed
a rating system by which people rate the support they have received at the end of every
email exchange. The rating system is just 3 links: one for “great,” another for “just OK”
and the last for “not so good.” Each rating has an illustration of a smiley face to make
the selection even more straightforward at a glance. These smileys are colored like
traffic lights: green for good, yellow for OK and red for bad.

“We asked ourselves what

we wanted this company to

stand for. We didn’t want

to just sell shoes. I wasn’t

even into shoes—but I was

passionate about customer

service.”
— Tony Hsieh, Founder of Zappos

Techniques for Building Better User Experiences CHAPTER 06

187

Once a customer submits a rating, they are invited to provide additional information.
This is optional but a great way to gather feedback that can be used to improve support.
As customers rate the response they’ve received to each support request, 37signals col-
lects data on how well the company is doing, and can even track ratings of individual
staff members to see if anyone is falling behind. This can be visualized by stacking all
these smiley icons together to get one big image, let’s say for the last 100 ratings. 37sig-
nals also uses this system as a great marketing tool. A page has been created to display
the last 100 ratings, visualized with the help of traffic-light colored smileys. This way,
the predominance of green on the big wall of smiley faces gives the customer an idea of
how healthy the 37signals support actually is.

Figure 6.29. 37signals shows off its support ratings on the Smiley page.

CHAPTER 06 Techniques for Building Better User Experiences

188

DOCUMENTATION IS ALSO UX

Documentation is often the weaker part of the overall user experience. It’s not par-
ticularly exciting to write, and not very fun to read. But it doesn’t have to be this way.
The team at MailChimp has developed a great method of producing documentation.
First, it covers the basics, writing about all of the major features. Then, whenever it
gets a support request, the company writes out a great, detailed answer. After sending
the answer off to the customer, MailChimp files it in its knowledge base. This way, the
customer receives great service, and the time spent will also go into building up an in-
depth knowledge base asset that all other customers can use.

To ensure your documentation is accurate, actually go through the process as you
write it. This will also give you an opportunity to take plenty of screenshots, which
will help to explain the steps quicker. Documentation doesn’t have to be boring to write
either, so have fun with it if possible—it will take away the tedium of reading it. On one
page that explains how to set time zones, MailChimp has a photo of walls clocks sitting
above a mural of Chimpzilla destroying city buildings. This playfulness makes the
instructions much more human and interesting.

Be careful, though. Jokes work only when the reader is receptive to them. When
troubleshooting a critical problem, the reader will probably be stressed out, and humor
will have no place on those pages. Handle these issues professionally and with care.
If the pages are not critical, though, learn from MailChimp and have some fun; it will
break the tedium of an otherwise boring task.

Figure 6.30. The Chimpzilla picture from the MailChimp support page on time zones.

Techniques for Building Better User Experiences CHAPTER 06

189

ADD CREDITS

Ryan Carson at Think Vitamin advocates giv-
ing users credits whenever things go wrong.
If a user runs into a problem with his service,
Ryan compensates them by crediting their ac-
count (offering a free subscription period, for
example). This goes beyond fixing the prob-
lem; it tells customers that if something goes
wrong, Think Vitamin will take full respon-
sibility.

This tactic worked tremendously well for
Think Vitamin. People are so unaccustomed to
great customer service that when they get to
experience it, they will be truly grateful. Not
only that, but they will want to share their
experience, too. The gains here are much
bigger than the loss of giving your customer
more than they’ve paid for: you’ll be making
them happier, more loyal and ready to recom-
mend your service to their friends.

PLEASE-REPLY

Every interaction with your customers is an opportunity for meaningful engagement
that strengthens your relationship. It is surprising, then, how many companies still
use no-reply email addresses today. After all, what better way to tell your customers
that you care about what they think than to tell them that they shouldn’t reply back to
you, right?

But it’s worse than that. No-reply email addresses may negatively affect delivery
rates. For example, Google’s Priority Inbox feature monitors addresses people respond
to most, and so marks them as more important. It is very likely that their spam algo-
rithm also takes replies into account—after all, if you’re replying to an email, it makes
it more likely that the email is genuine and not spam.

What to do? Turn this problem into an opportunity by turning the no-reply into
a please-reply. If you have a support ticket system, you can forward the replies you
receive there, and then handle them like you normally would.

Figure 6.31. Modern payment-
management systems usually have
an option to assign credits to active
accounts. The example above is a
credits page from Recurly.

CHAPTER 06 Techniques for Building Better User Experiences

190

You should also set up filters to differentiate between genuine replies, automated
replies (like out of office) and delivery failure messages. You want to get the automated
stuff out of the way to ensure you’re not swamped. If your system doesn’t have this,
Gmail offers some good filtering options as well as strong spam protection. Above all,
remember to use this opportunity to build stronger relationships with your customers
when they do reply.

REWARD PASSIONATE USERS

Marketing your product doesn’t have to mean throwing lots of money at ads. The best
salespeople your product can have are passionate customers. They’re the people who
use your product every day and so know all about the things that make it great and
worth using. A recommendation from a friend has no commercial bias, which makes it
much more effective than a paid ad.

Figure 6.32. Dropbox has set up ways to easily refer people via email and social
media.

Techniques for Building Better User Experiences CHAPTER 06

191

Dropbox used to buy ads,8 but it found that it spent more money on acquiring paid
customers than it was getting back in revenue. The company rethought its strategy and
focused on customer-driven marketing. Its new approach was to reward passionate
customers for referring their friends. Dropbox gave incentives to both parties: refer-
rers got free extra storage, and their friends started with more storage space than they
otherwise would have had.

Encouraging passionate users to invite their friends and rewarding them for the
gesture has proven to be very successful for Dropbox. Another advantage of this ap-
proach compared to typical affiliate marketing is that you are rewarding users through
the product itself, rather than with money. This increases the value of your product for
the people you reward and eliminates the hassle of processing payments.

THANK YOU

How often do you thank your customers for choosing your product or service? The typi-
cal response you’ll get from most companies is an automated email, so doing something
special is relatively easy. Why not delight your best customers with a written thank-you
card? Not an email—an actual card. It’s a small gesture and won’t cost much, but it will
make your customers happy and it will make your brand really stand out.

8 Porter, Joshua. “Reward The Passionates,” smashed.by/dropboxads.

Figure 6.33. A thank-you card from Wufoo.

CHAPTER 06 Techniques for Building Better User Experiences

192

This is what Wufoo does with its top customers. It has even gone so far as to handcraft
thank-you cards, with staff members handwriting each one. To speed things up, Wufoo
brings everyone on board; on Fridays, the team members would write about 10 cards
each to the people who have helped make their company successful.

Your customers won’t expect you to put so much effort into saying “thank you,” so
cards like these would come as a delightful surprise.

Anti-UX: Dark Patterns
Generally, bad design is a product of incompetence. There are times, however, when
poor design is intentional, aimed at tricking the user into doing a certain thing for the
benefit of the designer. This technique even has a name: dark patterns. We’ll cover a few
examples here. Avoid such patterns in your own work because they all cross the line
from persuasion to deception—and deceiving users is not a viable long-term strategy—
neither from an ethical or a business standpoint.

Here’s a typical dark pattern used by advertisers on Softpedia: a disguised ad. Softpe-
dia shows a file download link, however, just over the top of it and to the left are adver-
tisement banners. Each banner image itself looks like a download link, together with little
rating stars. A user who has just arrived at the page and is looking around for a download
link may fall into the trap and click on one of the two fake ones presented by the ads.

Figure 6.34. Disguised ads on Softpedia.

Techniques for Building Better User Experiences CHAPTER 06

193

Here’s another dark pattern: a trick question. The sign-up page of the Wired magazine
used to have some check boxes at the bottom that asked you whether or not you wanted
to receive offers from them or their partners. There were 8 boxes in total. Why so
many? Wired alternated between opt-in and opt-out on every line, and it danced this
jig twice. It distinguished between phone and mail offers and between Wired and its
partners, and it had separate boxes for opting out. It has since cut this in half to a more
manageable 4 radio buttons.

One other dark pattern example: forced continuity. This one is used to get users to sign
up for a recurring subscription. For example, signing up to a free trial and then hav-
ing your account automatically upgraded to paid plan when the trial ends without an
adequate reminder beforehand. At one time, Audible tried to push its membership plan
without making the monthly charge clear. The checkout process simply displayed the
price, so some users assumed this was a one-time payment, only to be surprised when

Figure 6.35. Wired tried to get you to sign up on their mailing list with 8 different checkboxes.

CHAPTER 06 Techniques for Building Better User Experiences

194

their card got charged the following month. Fortunately, Audible has listened to com-
plaints and has since modified it ś process to make it more clear.

Steering away from these patterns is recommended. Sometimes you may get close
to crossing the line between persuasion and deception, but you’ll always know when
you’ve crossed it. Using a design technique to trick the user to take some action usually
means that they’re not aware of it happen-
ing. This may mean not seeing a hidden fee,
clicking the wrong checkbox, clicking on a
disguised ad, and so on. The user takes an
action that they would not have taken had
they been given more information. Dark
patterns always try and withhold informa-
tion from users, and if you knowingly use
them, you should also know that you’re
crossing the line from persuasion to
deception. Deceiving your users and your
customers has never been, and will never
be a good long-term strategy.

The Value of Good Design
On 24 January 2012, Apple announced its financial results for the first quarter of its
fiscal year: a record revenue of $46.33 billion, and a record net profit of $13.06 billion.
It’s one of the highest quarterly profits on record, ever. Apple’s success stems from their
focus on exceptional product design. Its marketing is effective, but it wouldn’t work
without a strong product, and likewise, the culture just wouldn’t be the same if the
people working there didn’t love the products they were building.

Here’s a story to illustrate just how important product design was to Apple during
its resurrection under Steve Jobs. Jonathan Ive, Apple’s chief designer, wanted to add a
handle on the new translucent iMac he was working on. At the time, he felt that people
weren’t comfortable with technology and so were scared to even touch it. The handle
would give people permission to touch the computer and make it more approachable.

The handle would have been very expensive to build, and thus, Ive faced strong
resistance from other executives and engineers. They wanted to know how the handle
would pay off and what its return on investment (ROI) would be. When Steve Jobs saw

Figure 6.35. Audible didn’t make it clear
that their Gold Membership was actually a
monthly subscription.

Techniques for Building Better User Experiences CHAPTER 06

195

the handle, he instantly understood its purpose and gave it the go-ahead. He overruled
all objections and sent a clear message to his staff that strong product design was the
most important thing to Apple, not cost analyses or ROI calculations.

Years later, we can see that his strategy has paid off, not only from the standpoint
of creating products and a brand that people love, but that of building one of the most
profitable companies in the world. If you are in doubt whether you should spend that
extra time and effort designing a product you and your customers will love using, re-
member the iMac handle. While their immediate value may not be clear, strong design
and attention to detail will pay off in the long run by helping you build a strong brand,
loyal customers and a product that you are passionate about.

About the Author
Dmitry Fadeyev is the founder of the UsabilityPost blog where he
posts his thoughts on good design and covers interesting interface
design techniques. He’s been doing freelance Web design over the
years, with a recent notable project being the UX site for the Stack
Exchange network. His latest project is a Web app called Usaura
which helps designers run micro usability tests using screenshots of
their interfaces and prototypes.

About the Reviewer
Joshua Porter is an interface designer and founder of Massachusetts-
based Bokardo Design, where he focuses on the design of social Web
applications. A Web geek for over a decade, Josh designs simple, usa-
ble interfaces for clients, from startups to giants. He also consults with
companies suffering from severe cases of feature creep and those
that merely need objective advice. Josh wrote the book Designing for
the Social Web and speaks regularly at Web design conferences and
events around the world. Since 2003, he has written the popular de-
sign blog bokardo.com, which is quite well known for making design
issues either easy to understand or more complicated than ever. When
he is not designing, consulting or writing about both, Josh is either
rock climbing or trying to keep up with his two-year old.

Designing for the Future,
Using Photoshop
Written by Marc Edwards
Reviewed by Jon Hicks

CHAPTER ?

Designing for the Future, Using Photoshop CHAPTER 07

CHAPTER 07 Designing for the Future, Using Photoshop

198

s an ever evolving platform, the Web has undergone significant changes
since its inception. It has continued to diversify and become available to more
people on more devices and in more locations. Having often been ignored,

good design and user experience are now almost mandatory for success. The lines
between desktop software, mobile software and the Web continue to blur as designers
and developers use a combination of what’s familiar and what’s best for the situation at
hand. Tools, techniques and requirements continue to change.

Today, native desktop and native mobile software often contains HTML, CSS, Java-
Script and other languages—methods and techniques that were created with the Web
in mind. And as websites and Web apps grow in both size and function, it is common
for designers to use techniques that were developed with native software in mind. The
underlying code and technologies may or may not be of interest to the designer, but the
restrictions they put on what’s possible and on the designer’s assets, such as images,
probably will be. Luckily, the design challenges for native apps and for the Web are
similar, so a lot of the solutions can be shared.

Let’s look at some of the challenges that designers face now and will face in the
future. We will then address ways to tackle these challenges using one of the most
popular tools available: Adobe Photoshop.

Screen Sizes
The explosion of mobile devices has changed the game. If you’re building a website, you
can’t assume screen size, resolution or pixel density of the device your design will be
seen on. Mobile and desktop apps are a little more targeted, but designers still need to
be mindful of how their designs will be seen across different devices.

It almost seems inevitable that post-PC devices will overtake desktop and laptop
computers in numbers. Factoring in how your website will appear on a 4- or 10-inch
mobile screen, as well as a 15-inch laptop or 27- inch desktop screen, is becoming in-
creasingly important.

Pixel Density
Pixels—the square picture elements that make up everything we see on a computer
display—are shrinking, allowing crisper, more printed paper-like results. What is cur-
rently possible is fast approaching the limit of what is desirable.

A

Designing for the Future, Using Photoshop CHAPTER 07

199

Pixel density is typically measured in pixels per inch (PPI). A pixel density of 100 PPI
means that 100 pixels are contained within a 1-inch row. A 1 x1 inch area on a 100-PPI
display would contain 100 × 100 (or 10,000) pixels. This might all sound a little dry, but
the concept is vitally important when working out how large your design elements
need to be and how they will scale. Let’s look at some real-world examples.

The iPhone 3GS’ display is 320 pixels wide by 480 pixels tall. The screen itself is 3.5
inches diagonally, making the pixel density 163 PPI. By contrast, the iPhone 4’s “Retina”
display is exactly the same physical size, 3.5 inches, but the resolution is 640 pixels wide
by 960 pixels tall: exactly double the iPhone 3GS’ screen. The pixels on the iPhone 4 are
exactly half the width across and half the height, making its pixel density 326 PPI. An-
other way to look at it is that for every pixel on an iPhone 3GS, there are 4 pixels in a 2 × 2
grid on an iPhone 4.

Some common display pixel densities:

Since the very first display was invented, the trend has been to increase pixel density. This
will likely continue until all or most displays are in the 200 to 350 PPI range because that is
around the threshold at which human eyesight can no longer distinguish individual pixels
(although the exact PPI of that threshold will vary according to the viewing distance, how
good your eyesight is and when you had your last coffee). We’ll look at how to construct
Photoshop documents so that they scale seamlessly for all of the graphics targets required
for the Web, iOS, Android, Windows Metro and other platforms.

Figure 7.1. Resolution and screen size of iMac and some mobile devices.

Device	 Pixels	 Inches	 PPI

iMac (2011)	 2560 × 1440	 27	 109

iPad	 1024 × 768	 9.7	 132

iPhone 3GS	 320 × 480	 3.5	 163

Samsung Galaxy SII	 480 × 800	 4.27	 218.5

Nokia Lumia 800	 480 × 800	 3.7	 252

iPad (3rd generation)	 2048 × 1536	 9.7	 264

Samsung Galaxy Nexus	 720 × 1280	 4.65	 316

iPhone 4 and 4S	 640 × 960	 3.5	 326

CHAPTER 07 Designing for the Future, Using Photoshop

200

Location
In the past, websites and applications were viewed only on desktop computers. Today,
you can’t assume that your design will be viewed on a bright screen in an office, study
or lounge. If your mobile app is for finding great local cafés, then there’s a good chance
it will be used in broad daylight on a sunny day, while the viewer squints as cloud re-
flections bounce off their phone’s screen. Getting your design’s contrast right is vital, as
is testing on different devices in typical scenarios. We’ll cover some methods of testing
designs on devices in the final part of this chapter.

Realism
Higher-pixel-density displays, multi-
touch input and faster graphics
processing have created great op-
portunities to make user interface
(UI) design and animation far more
realistic. Beautiful designs with
subtle shading, shadows and tex-
tures are now possible. Metaphors
can be taken further. Ornamental
design cues, often called “skeuo-
morphics,” can be added, hinting at
how to interact with content. The
edge of an open book could show
a stack of pages, suggesting that
swiping from right to left to turn
the page is possible. A synthesizer
app might feature patch leads that
can be virtually plugged in to re-
route audio signals.

 These examples aren’t require-
ments—the software doesn’t need
pages or patch leads in order to
function. They’re a hat tip to the
analogue world. If used properly,

Figure 7.2. The Early Edition 2 by Glasshouse Apps.

Figure 7.3. Nostalgic ornamentation by Glasshouse
Apps. The Early Edition’s sharing options mimic a
real-life envelope.

Designing for the Future, Using Photoshop CHAPTER 07

201

these garnishes should also make a design more usable because they help explain func-
tions in a familiar way.

Be careful, though. Adding real-world or nostalgic ornamentation might hold
promises that users expect you to deliver on. If a page looks swipeable, then it should
be. Some real-world connections might also be too tenuous; if your users are young
enough, they might not know what a vinyl record, 3.5-inch floppy disk or Rolodex is.

Building to Scale
As discussed, some devices already have high-pixel-density displays, and we’ll see
more high PPI mobile devices coming out. We’ll also very likely see high PPI desktops
and laptops, too—Windows, Mac OS X and the Web as a whole will follow the exact
same trend as mobile.

We’re in the middle of a transition. The older, lower PPI screens will be around
for some time, so both low and high PPI screens will need to be supported. Different
platforms are handling this transition slightly differently, but typically you’ll need a
complete set of images for each pixel density you are targeting.

iOS

For native iOS development, Apple has opted for two display densities and, therefore,
two UI scales. The newer displays are exactly double the pixel density of the early-
generation devices; for the iPhone, this means 163 PPI for the early models and 326 PPI
“Retina” displays for the iPhone 4 and subsequent models.

This is ideal for scaling because anything built with the right techniques for the small-
er size will scale perfectly to the Retina display. However, you will need two complete sets
of images: one for the non-Retina displays and one for the Retina displays. Apple’s conven-
tion is to add @2x to the file names of Retina-sized images, so myimage.png would have a
corresponding myimage@2x.png file.

Thus, if your initial files are at non-Retina sizes, then the Retina images would have to
be scaled to 200%.

ANDROID

Android is similar to iOS, except that it has four pixel-density targets instead of two,
because Android is used on a huge range of devices. Android caters to pixel densities

CHAPTER 07 Designing for the Future, Using Photoshop

202

of 120 PPI (low density), 160 PPI (medium density), 240 PPI (high density) and 320 PPI
(extra-high density). The UIs for all Android devices are at a scale based on one of these
four pixel densities.

To support all four densities, you would need a complete set of PNG images for each.
Low-density Android devices are uncommon, so you will probably only want to sup-
port the other three. If your initial design is at 160 PPI, then you would need to scale
those densities to 100%, 150% and 200%.

WINDOWS METRO

Like Android, Windows Metro has been designed to accommodate a wide variety of de-
vices, so multiple sets of images are needed. Windows Metro assets are created at 100%,
140% and 180%, unless scalable vector graphics (SVG) are used.

MAC OS X

Although unannounced, Mac OS X will very likely follow the pattern of iOS and cater
to non-Retina and Retina displays with 100% and 200% image sets. Where appropri-
ate, PDF images can also be used for Mac OS X UI elements, with one file covering both
sizes.

WEBSITES AND WEB APPS

How different display pixel densities will be handled on the Web in the long term is a
little unclear, but the methods employed will likely be very similar to iOS, Android,
Windows Metro and other native platforms.

Some websites already switch sets of images based on the display PPI, similar to
iOS, Android and Windows Metro. Other designers try to draw everything with code—
by using CSS and SVG images or by embedding icons and glyphs in fonts—so that im-
age sets are not required.

One thing is clear: as high-PPI displays become more mainstream, different meth-
ods will need to be refined for the Web. Any native design or Web design of the future
will need to be built to scale to multiple sizes. So, how exactly do we achieve this in
Photoshop?

Designing for the Future, Using Photoshop CHAPTER 07

203

PHOTOSHOP DOCUMENTS THAT SCALE

When it comes to building elements that scale easily in Photoshop, avoid bitmaps. Bit-
maps are, by nature, a grid of square picture elements. This means that detail cannot
be added when a bitmap is enlarged because
no additional detail exists (extra pixels could
be interpolated from neighboring pixels, but
that leads to blurriness).

Elements cannot be scaled down, either;
doing so creates obvious scaling artefacts
and, therefore, lower-quality artwork.

The solution is to build everything using
vector shapes and effects that can be regener-
ated at any size. In Photoshop, that means us-
ing solid-color, pattern or gradient layers with
vector masks and layer styles. This allows
artwork to be scaled up or down and then
exported as bitmap images at the fixed pixel densities.

PDFS, SVGS, CSS AND DRAWING WITH CODE

Another approach to handling wildly different resolutions and different pixel densi-
ties is to draw everything using vector-based images (such as PDFs or SVGs), or to draw
using code, or to build elements with CSS at runtime. These methods work very well in
some situations, typically for simple objects. The techniques are also good if the size,
color or other properties of the objects need to be changed dynamically.

However, the more complex the objects are, the more resource-hungry they tend
to be, which might lead to performance problems. The increased demand on resources
can be a considerable problem for mobile devices. Also, using one vector SVG or PDF
image for all pixel densities means you won’t have pixel-level control over how the
result looks at each size, which can be important when scaling to sizes other than exact
multiples. An SVG or PDF image scaled by 200% will look crisp, but scaling to 140%,
150% or 180% will likely blur the edges.

But before diving deep into Photoshop techniques, let’s prepare our workspace.

Figure 7.4. Avoid bitmaps and always
use vector shapes and effects.

CHAPTER 07 Designing for the Future, Using Photoshop

204

Preparing Your Workspace
Let’s get started on a new project in Photoshop. You will want the width and height of
your document to match the size of the final website or app. In our case, we’re designing
an iPhone app in portrait orientation, so we’re starting with a 320 × 480 pixel canvas.
I’ve chosen the non-Retina (i.e. smaller) iPhone pixel density as the starting point be-
cause I favor building at 1× and then scaling up for the finishing touches and exporting
the 2× images—being able
to snap to the pixel grid and
having sufficient workspace
are important to me. This is
a personal choice, and you
might prefer starting at the
larger Retina size and scal-
ing down. Each approach
has its pros and cons, and
you would need to make a
similar decision if you were
designing an Android app,
a Windows Metro app or a
website targeted at high-
and low-PPI displays.

PIXEL GRID

Starting at the smaller, 1× size en-
sures everything you do is locked
to the 1× pixel grid. If we started
at the 2× size, it would mean
that we would have to ensure we
only used even positioning, even
heights, even widths and even
layer style values. If we didn’t,
uneven values (1, 3, 5, etc.) would
land on half pixels (0.5, 1.5, 2.5)
when scaled down, resulting in
blurry edges or rounding errors.

Figure 7.6. Scaling up to exact multiples always
works. Scaling down can cause issues.

Figure 7.5. Decide whether to start new documents with
smaller pixel density and then scale up or vice versa.

Designing for the Future, Using Photoshop CHAPTER 07

205

PREVIEW SIZE

Working at 1× means that a 1:1 pixel preview (where 1 pixel on your computer display
represents 1 pixel in your design) on your computer’s display will be smaller. In some
cases, this is vital because your display may not be big enough to show a full portrait
iPhone Retina preview (960 pixels high, plus room to fit the menu bar, window bezels
and dock). With a Retina display iPad, the situation only gets worse.

I do not know of many displays that can fit 2048 pixels vertically. The current 27-
inch Mac Cinema Display is 1440 pixels high, so even with the largest Apple display
available, you wouldn’t be able to work on portrait designs for a Retina iPad and see the
entire iPad screen uncropped. A Retina iPad has 3,145,728 pixels, just shy of a 27-inch
Cinema Display’s 3,686,400 pixels. But once high-PPI computer displays are released,
preview size will not be an issue.

DOCUMENT PPI

You might have noticed that the new document is set to 72 PPI. This might seem a little
counterintuitive, as it does not match the device’s pixel density. However, there are
good reasons to work like this.

Let’s say you have one document at 100 PPI and another at 200 PPI. If you use Copy
Layer Style on a layer in the 100 PPI document and Paste Layer Style on a layer in the
200 PPI document, the Layer Style will be scaled. A 1px drop shadow would become a
2px drop shadow.

This sounds like a reasonable thing to do from Photoshop’s perspective, but probably
not what you’re after in most situations. Here’s why: if you’re being particular about
your document PPI, you would probably set up your iPhone documents at 163 PPI or 326
PPI and your iPad documents at 132 PPI and 264 PPI.

If you are working on an app that is for both iPhone and iPad, there’s a strong
chance you will copy elements and layer styles between your iPhone layout and iPad
layout. If you have the document PPIs set to match the devices, your layer styles will get
scaled by about 20% each time.

That is not an issue with 1px shadows, as they will be rounded up or down to the
nearest pixel, and likely stay the same, but any value larger than about 5px will be
scaled and you may be left wondering why elements look subtly different after moving
them between documents. The same may be true if you are targeting different Android
or Windows Metro devices.

CHAPTER 07 Designing for the Future, Using Photoshop

206

Also, as discussed previously, image pixel density doesn’t matter for the Web and
apps—it is the pixel dimensions of the final images that count, not the PPI you have set
in Photoshop.

Therefore, my strong recommendation is to always set documents to 72 PPI. Doing
so will make Photoshop far more predictable.

COLOR PROFILE

Our color profile is set to “Don’t Color Manage This Document.” This is deliberate and
required if you’d like the colors in Photoshop and Illustrator to match other applica-
tions and not shift when exported.

In the print world, color management typically involves calibrating your entire
workflow, from scanner or digital camera to computer display to hard proofs to the
final press output. This can be a tall order, especially when the devices use different
color spaces—matching RGB and CMYK devices is notoriously hard.

When designing or editing for TV, calibrating the main editing display and using
a broadcast monitor are common—these will show a real-time proof of how the image
might look on a typical TV in a viewer’s home.

In these scenarios, color management offers many benefits and is highly recom-
mended.

When building Web and application interfaces, the situation is a little different.
The final output will be displayed on the same (or same type of) device that you used
to create the artwork: a computer display. There are some complications, though. Even
though the device on which you created the Web or app interface will be the same as
or similar to the one on which the final product will be used, you will have various
sources for color rendering: images (typically PNG, GIF and JPEG), style markup (CSS)
and code (JavaScript, Java, HTML, Objective-C, etc.). Getting them all to match can be
tricky.

When designing website or app interfaces, we want the colors that are displayed on
screen in Photoshop and that are saved in files to perfectly match what is displayed in
other applications, including Firefox, Safari and the iOS simulator.

Colors should not shift or appear to shift in any way under any circumstance. There-
fore, we do not want Photoshop’s in-app color management to alter colors on screen or
in saved files.

Designing for the Future, Using Photoshop CHAPTER 07

207

DISABLING PHOTOSHOP’S RGB COLOR MANAGEMENT

To disable Photoshop’s RGB color management, choose Edit → Color Settings, and
set the working space for RGB to “Monitor RGB.” For each document you work on, you
will need to ensure that the document color profile is set to “Don’t Color Manage This
Document.” This can be done by choosing Edit → Assign Profile, or by configuring
the advanced options when creating a new document. If you don’t do this for every sin-
gle document you work on, the colors will appear incorrectly in Photoshop itself.

Figure 7.7. Setting Photoshop’s RGB Color Management off helps avoid Photo-
shop’s in-app color adjustments on screen or in saved files.

Figure 7.8. With “Assign Profile” as a non-destructive action, you change the
way your document appears on screen without effecting the color data.

CHAPTER 07 Designing for the Future, Using Photoshop

208

Every Photoshop document contains a color profile that is separate from the actual
color data stored for each pixel. “Assign Profile” simply changes the profile in the
document, without affecting any of the color data. The action is non-destructive—you
can assign a new color profile to your docments as often as you like without doing
any damage. Assigning a new profile might change the way the document appears on
screen, but the data contained in the file will be unaltered.

“Convert to Profile” is quite different. It not only assigns a color profile to the docu-
ment, but tries to keep your image looking the same on screen. It does this by process-
ing the color data contained in the file for each pixel. Converting to a new profile will
more likely maintain the way your document appears on screen, but the data con-
tained in the file will be permanently changed. Use with caution.

Figure 7.9. When saving files with “Save For Web” in Photoshop, ensure “Convert to sRGB” is
turned off, also for saving as JPEG file. Otherwise you will alter and mismatch the color values.

Designing for the Future, Using Photoshop CHAPTER 07

209

If you are copying layers from one Photoshop document to another, ensure that both
documents have been assigned the same color profile. If they haven’t, then color infor-
mation could be destructively changed as it moves between documents. You will also
need to ensure that View → Proof Colors is turned off. If enabled, Proof Colors will
change the way colors are displayed in your document, meaning that they won’t match
other applications.

Finally, when saving files with “Save for Web,” ensure that “Convert to sRGB” is
turned off. If it is enabled, the image will be converted from the current color profile to
the sRGB color profile, thereby altering the color values, destructively changing the file
and mismatching colors with colors in code. If you are saving a JPEG file, then also turn
off “Embed Color Profile” (you might want this to be turned on for photos in some cases,
but chances are you’ll want it off for interface elements and icons).

If you are using Adobe Illustrator together with Photoshop and want the colors to re-
main consistent when pasting elements between the two, then you will need to set up
Illustrator in a similar fashion.

Figure 7.10. When building interfaces always set Illustrator´s document color pro-
file to “Don’t Color Manage this Document” via Edit → Assign Profile.

CHAPTER 07 Designing for the Future, Using Photoshop

210

DISABLING ILLUSTRATOR’S RGB COLOR MANAGEMENT

Color management in Illustrator is very similar to Photoshop, as are the settings re-
quired for Web and application design. To disable Illustrator’s RGB color management,
go to Edit → Color Settings and set the working space for RGB to “Monitor RGB.”
For each document you work on, you will need to ensure that the document color
profile is set to “Don’t Color Manage This Document.” To do this, choose Edit → Assign
Profile. This must be done for every single document you work on.

You will also need to turn off View → Proof Colors. If enabled, Proof Colors will
change the way colors are displayed in your document, meaning that they will not
match other applications. When saving files with “Save For Web,” ensure that “Convert
to sRGB” is turned off.

Figure 7.11. Set “Don’t Color Manage This Document” for every single Illustrator-
document you work on. Also set View → Proof Colors turned off.

Figure 7.12. When saving files with “Save For Web And Devices” in Illustrator,
ensure “Convert to sRGB” is turned off.

Designing for the Future, Using Photoshop CHAPTER 07

211

Shapes
Photoshop’s shape layers are created and edited as vector
paths, which means they can be rendered at optimal quality at
any size. They are an ideal starting point for scalable, flexible
glyphs, icons and interface elements.

Almost any hard-edged shape can be created using a
combination of Photoshop’s shape tools (Rectangle, Rounded
Rectangle, Ellipse, Polygon, Line and Custom Shape).

SNAPPING TO THE PIXEL GRID

The Rectangle and Rounded Rectangle tools both have a well-hidden option that allows
them to snap a drawing to the pixel grid, ensuring sharp edges on all sides. The “Snap
to Pixels” checkbox can be found in the Options bar, usually at the top of the screen.
Unfortunately, the Ellipse tool doesn’t have the “Snap to Pixel” option. If you need to draw
a pixel-snapped circle, the Rounded Rectangle with a large corner radius works well.

FIXING ROTATION ISSUES

Rotating layers in Photoshop by 90 or 270 degrees by selecting either “Free Transform
Path,” “Rotate 90º CW” or “Rotate 90º CCW” in the Edit menu can cause problems with
vector and bitmap layers. The quality of the outcome will be determined by the art-
work’s size. If the layer has an even width and height, you’ll be fine.

Figure 7.13. The icon
above is a single
vector layer, created
from several paths.

Figure 7.14. Photoshop’s Rectangle and Rounded Rectangle tools allows sharp edges
on all sides. The “Snap to Pixels” check box can be found in the Options bar, usually
at the top of the screen.

CHAPTER 07 Designing for the Future, Using Photoshop

212

If the width and height are odd, you’ll also be OK.
But if it is odd by even or even by odd, then you’ll see
something similar to the results on the right. Chang-
ing the origin to the top left, top right, bottom left or
bottom right prior to rotating will ensure that every-
thing stays crisp after transforming.

NUDGING POINTS EXACTLY 1 PIXEL

When nudging vector path anchor points, Photo-
shop can exhibit some strange behavior depending
on how far you’re zoomed in. At 100%, nudging using the arrow keys will move your
vector point exactly 1 pixel. At 200%, nudging moves the point by half a pixel. At 300%,
it will move a third of a pixel. If you want pixelperfect vector shapes, you’ll probably
want to nudge in single-pixel increments, even if you’re editing while zoomed in.

We can take advantage of Photoshop nudging however we want, even at 100%. With
your document open, choose Window → Arrange → New Window to create a second win-
dow of the document. You can then resize the new window and place it somewhere out
of the way. Edit in the original window as normal, zooming in as far as you’d like.

Original layer
(vector or bitmap)

Using standard
rotation

Using Bjango
rotation action

Figure 7.16. Changing the origin to the top left before rotating will ensure that the
quality is maintained.

Figure 7.15. Bypass Photoshop’s
rotation bug by using Bjango
rotation. smashed.by/rotation

Designing for the Future, Using Photoshop CHAPTER 07

213

When you need to nudge a point, simply press Command + ` to switch to the window
that’s zoomed to 100%, nudge using the arrow keys, and then press Command + ` to
switch back again. Because the other window is zoomed to 100%, nudging will move
the selected vector points exactly 1 pixel. It’s a little awkward, but far quicker than hav-
ing to zoom out to 100% and back in again to edit fine details.

However, dragging vector path anchor points with the mouse does snap to the pixel
grid. Also, holding Shift while using the arrow keys to nudge always moves 10 pixels,
no matter how far you are zoomed in.

Shading and Form
Shading and shadows can add body and form to a design, making elements look
like they exist in three dimensions. Raised convex elements look like they can be
pressed. Lowered concave elements look like they are carved out. Shadows can in-
dicate height, lending structure and hierarchy. These are important hints that show
at first glance how a UI functions, playing on our experience with real-world objects
and lighting.

However, before we start exploring shading, shadows and other techniques, we
need to decide on a light source. UI designs and illustrations commonly appear to be
lit from the top of the screen, with parallel light rays. This mimics a typical daylight
scene, where the sun is above and far away. It is also similar to typical indoor scenes,
where lights are mounted in the ceiling directly above. You might decide to use a dif-
ferent light source or multiple light sources, which is OK, provided that you are con-
sistent and that the entire design follows the same rules.

In both Photoshop and Illustrator, shading is often accomplished with gradients.
In Photoshop, this is best achieved using gradient fill layers or gradient layer styles
because both can be scaled infinitely. In Illustrator, a gradient fill can be applied to any
path.

CONVEX SHADING

Convex shapes bulge outwards, towards the viewer. These are often expressed through
linear gradients from light to dark because the light source is directly above. Convex
shapes look raised, so they’re great for buttons.

CHAPTER 07 Designing for the Future, Using Photoshop

214

CONCAVE SHADING

Concave shapes appear hollowed out or depressed and can be drawn as a linear gradi-
ent from dark to light (the opposite of convex shapes). Using a combination of a few
shapes with gradient fills, we can create a simple scene with some dimension.

Figure 7.18. By changing the gradient slightly, we can make the shape look
like it has a large flat section in the middle, This can also be achieved by
adding a second layer with a flat color fill.

Figure 7.17. Convex shapes bulge outwards, expressed through linear gradi-
ents from light to dark. Convex shapes look raised, so they’re great for buttons.

Designing for the Future, Using Photoshop CHAPTER 07

215

SPHERICAL SHAPES

Spherical shapes are often constructed with radial gradients. Radial gradients start from
the center and grow outward in a circular pattern. In Photoshop, the center point of the
gradient can be moved by clicking and dragging on the canvas while the gradient window is
open (for gradient fills) or when the layer styles window is open (for layer-style gradients).

It is common for spherical shapes to reflect diffused light from a surface below.
Replicating this effect is possible with a few minor changes to the gradient. Using pho-
tographs and other references might help you fine-tune the amount of contrast needed
for the material you are reproducing (see Figure 7.22.).

Figure 7.19. Concave shapes can be drawn as a linear gradient from dark to light.

Cross-section (left) Elements with gradient fills (right)

Figure 7.20. The lines at the top and bottom look like channels carved
out. Recessed lines are often used as dividers in UIs.

CHAPTER 07 Designing for the Future, Using Photoshop

216

REFLECTED GRADIENTS

Reflected gradients in Photoshop contain a linear gradient that is editable, plus a mir-
rored repeat of the same gradient. Reflected gradients make editing perfectly sym-
metrical gradients a little less tedious, provided they produce the effect you are trying
to achieve.

Figure 7.21. For gradient fills, the center point of the gradient can be moved by clicking and drag-
ging on the canvas while the gradient window is open.

Figure 7.22. The same diffused reflections can exist in other real-world objects. Careful use of
light-to-dark-to-light gradients can look spectacular as well as add realism to a design.

Designing for the Future, Using Photoshop CHAPTER 07

217

ANGLE GRADIENTS

Angle gradients can be a great way to mimic the kind of environmental reflections that
are found on highly polished metallic objects. As with radial gradients, the center point
of the gradient can be moved in Photoshop by clicking and dragging on the canvas
while the gradient window is open (for gradient fills) or when the layer styles window
is open (for layer-style gradients).

GRADIENTS ON GRADIENTS

Combining a gradient fill layer with a gradient layer style enables you to overlay two
different gradients, creating more complex and dynamic results. To combine the
gradients, you will need to set a blending mode for the gradient layer style. This will
allow the gradient fill layer to appear through the gradient layer style. In the examples
below, I’ve used either Screen (good for lightening) or Multiply (good for darkening).

GRADIENT DITHERING

Adding dithering to a gradient produces smoother results because it adds subtle pat-
terned or random noise. Non-dithered gradients often contain visible banding. Dither-
ing is even more important if your artwork will be viewed on cheap 6-bit-per-channel
“twisted nematic” LCDs and certain other display types, which tend to amplify posteri-
zation problems. Photoshop can dither gradient fill layers as well as gradients drawn

Figure 7.23. The center point of an angle gradient can be moved by clicking and drag-
ging on the canvas while the gradient window is open.

CHAPTER 07 Designing for the Future, Using Photoshop

218

with the Gradient tool, so turning that option on is recommended. Gradients drawn in
Illustrator cannot be dithered, nor can vector Smart Objects that have been pasted into
Photoshop from Illustrator.

If you use transparency as part of a gradi-
ent, it will not be dithered either, which
sometimes results in visible banding.
There is a solution for particular cases:
if you are using a gradient with trans-
parency in order to lighten an area with
white, then using a non-transparent gra-
dient with a Screen layer blending mode
will let you dither it. The same technique
can be used for darkening, with the Mul-

Figure 7.24. To combine the gradients, you will need to set a blending mode for the 	
gradient layer style, e.g. Screen (good for lightening) or Multiply (good for darkening).

Figure 7.25. A non-dithered gradient (on
the left) versus a dithered gradient (on the
right). The gradient on the right looks far
smoother.

Designing for the Future, Using Photoshop CHAPTER 07

219

tiply blending mode. Dithering is subtle and often difficult to see. The contrast has been
increased in the example on the left to emphasize the dithering pattern. The gradient
on the right looks far smoother because it has been dithered.

Textures
In real life, most items have some kind of texture. The texture might be obvious (such
as heavy grain in a plank of timber) or subtle (such as the fine pattern of brushed
aluminium). Adding texture can be a great way to denote different areas and surfaces,
giving elements a more tactile, realistic look.

There is a slight complication, though. Textures are typically bitmap-based, since
they need to appear photographic or have a photo-like quality. As we have discussed,
bitmap images and bitmap layers do not scale well and should be avoided where possible.
Photoshop allows three methods for adding texture that will also scale your documents
non-destructively: “Pattern Fill Layers”, “Pattern Layer Styles” and “Smart Objects.”

CREATING A PATTERN

Patterns can be created in Photoshop by using the Marquee Selection tool to select a
rectangular area, and then choosing Edit → Define Pattern. Once created, the pattern
will be available for use as a Pattern Fill Layer and a Pattern Layer Style pattern.

If you are planning to scale up your document, then you will want to create your
pattern texture at the largest size it needs to be.

If you would like precise control over how the pattern is viewed at particular scales,
then you will need to create a version for each size required. For example, you might
create two patterns for an iOS texture: one for the Retina scale and one for the non-
Retina scale. You would then switch the pattern used in your Pattern Fill Layers and
Pattern Layer Styles as you export all of your final image assets.

PATTERN FILL LAYERS

Pattern Fill Layers are precisely what their name suggests: they are layers filled with
a pattern. They may also optionally contain a vector mask, so that even if the bitmap
contained inside the pattern layer is softened by scaling, the edge itself will remain
sharp. Double-clicking a Pattern Fill Layer’s thumbnail in the Layers panel opens up
the options, allowing you to set the pattern scale independent of the document’s scale.

CHAPTER 07 Designing for the Future, Using Photoshop

220

PATTERN LAYER STYLES

Pattern Layer Styles are similar to Pattern Fills, but they are applied as a layer style.
This means they can be used in conjunction with Solid Color Fill Layers, Gradient Fill
Layers and even other Pattern Fill Layers.

SMART OBJECTS

In Photoshop, Smart Objects are documents contained within a layer, making them an
ideal way to embed a high-resolution texture in a lower-resolution document. Smart
Objects are rendered as their original file is rendered. Smart Objects created within
Photoshop are rendered at their original size, then scaled up or down using bitmap
scaling.

The best way to use Smart Objects in Photoshop is as a rectangular region with a
vector mask applied for the shape. This means that the texture itself will be bitmap
scaled, but the shape will be redrawn at size as a vector, making for a crisp edge.

To create a Smart Object in Photoshop, right-click or Control-click on a layer or
group, and choose “Convert to Smart Object.”

Smart Objects created by pasting or importing a file from Illustrator are natively
vector, so they can be scaled to any size and will re-render as required. Smart Objects
from Illustrator can contain multiple color fills, strokes and features that are not pos-
sible with Photoshop’s vector layers. However, some caution is recommended: Smart
Objects from Illustrator are not drawn with dithered gradients and so can have an-
tialiasing issues.

To create a Smart Object from an Illustrator file, choose File → Place from Photoshop.
Copying objects in Illustrator and then pasting them into Photoshop is also possible.

The Handover
Designers, developers and teams all work differently. Some see design as a process that
can happen parallel to development. Others see it as a task best completed prior to any
code being written. Where possible, I favor the latter because it allows for fast-paced
design iteration without having to change code.

Whichever way you work, you will need to keep in mind quite a few things when
handing over the design to the developer or development team. In addition to provid-
ing a complete set of images, you will need to consider other aspects.

Designing for the Future, Using Photoshop CHAPTER 07

221

FONT INFORMATION

Some parts of your design will likely require text to be rendered with code. Send the
complete specifications for each instance of type—including font, font size, color and
any relevant shadows—to the developer.

Ensure that the fonts used exist on the target devices. For websites and Web apps,
you might need to create a font stack, a list that specifies the order of preference for
fonts in the event that certain fonts are not available. If a font is substituted, words or
phrases might widen, so be sure to test with all of the fonts in your stack.

Also, what is possible in code is usually only a subset of what is possible in Photo-
shop. A gradient fill or complex layer styles on text in Photoshop might not be easy, pos-
sible or desirable in an app or website.

If you are designing for iOS, setting your Photoshop document to 72 PPI will make the
font sizes correlate closely to Xcode: 10-point type in Photoshop at the 1× size (320×480 for
iPhone) equates to 10-point type in iOS. Please note, however, that there will be some dif-
ferences in the way text looks, due to rendering differences between Photoshop and iOS.

STRETCHABLE IMAGES

UI images with dynamic widths or heights commonly stretch by repeating a section in
the middle. If your stretchable images contain patterns or dithered gradients, then you
will probably want to add a note to the developer; 1-pixel-wide repeating textures ne-
gate the benefit of dithering and usually look awful because the dithered pattern needs
more space to work its magic.

IMAGES AND PIXEL DENSITY

PPI information is almost always ignored when images are used on the Web or as UI
elements in iOS, Android, Windows Metro and Mac apps.

However, the pixel dimensions of your images do matter, so do get those right. For
iOS, ensure that your 2× images are exactly double the dimensions of your 1× images
and that elements within the images are in the same positions; your Retina images
should be identical to their smaller counterparts, but with more detail.

Please note that the PNG image format stores its pixel density as pixels per meter
(PPM). This can cause rounding errors when values are converted between PPI and
PPM. If you’ve ever seen an image change from 300 to 299.999 PPI when saved as a PNG,
this is why.

CHAPTER 07 Designing for the Future, Using Photoshop

222

PNG COMPRESSION AND IOS APPS

At face value, running your images through a PNG compression tool, such as OptiPNG,
PNGcrush, AdvPNG or PNGOUT, might seem like a great idea. The tool grinds away,
shaving kilobytes or bytes off of each file, hopefully improving the application’s down-
loading and launch speeds.

But to dramatically increase the drawing performance of iOS apps, Xcode recom-
presses PNG files as it builds. It premultiplies the alpha channel, and it swaps the bytes
in the red, green and blue channels to be sequenced as blue, green and red. Xcode then
recompresses the images using PNGCrush. The result is optimized for iOS’ purpose, but
as a side effect, any prior compression gets undone, due to the images being rebuilt.

There are definitely some good tools and reasons for optimizing your images for the
Web, but if you are creating a Cocoa iOS app and using Xcode’s built-in PNG compres-
sion, you gain no advantage.

DEVICE TESTING

If you are designing for mobile, test your final mockups on the target device or devices
themselves. The advantages in doing so are significant. You will be able to test ergo-
nomics and tap areas, and you’ll see the design in context, with the layout’s character-
istics in full force, all while having the luxury of being able to make changes.

Testing devices is important because screen types, warmth of colors and even sub-
pixel patterns vary greatly, so you might want to tweak the design after seeing every-
thing in situ. Some display types, such as AMOLED, can appear far more saturated and
with much higher contrast than typical computer LCDs. Not to mention, seeing your
design on the device is exciting.

There are many ways to get your final mockup onto a mobile device. Emailing im-
ages to yourself or using services like Dropbox works well, as do more tailored solu-
tions such as LiveView and Skala Preview. If you can, test with a method that main-
tains image quality: 32-bit PNG images are perfect, but lossy compression such as JPEG
could introduce artefacts.

SUB-PIXEL PATTERNS

A display’s sub-pixel pattern is the matrix used for the red, green and blue elements on
the screen itself. Some sub-pixel patterns—such as the PenTile matrix, used commonly
in OLED screens—can cause vertical edges to look different and irregular.

Designing for the Future, Using Photoshop CHAPTER 07

223

Techniques for Exporting Images From Photoshop
Exporting all of the image assets needed to build a website or app is probably the least
interesting part of the design process, usually entailing hours of grinding. Saving
images to multiple scales, as required by iOS, Android, Windows Metro and other
platforms, adds complication to the task. But there are ways to streamline or automate
exporting.

COPY MERGED

Cutting up your design with “Copy Merged” is fairly easy: make the relevant layers vis-
ible, draw a Marquee selection around your element, choose Edit → Copy Merged, then
File → New, hit Return, and then Paste. The result is a new document with your item
isolated, trimmed to the absolute smallest possible size. From here, all that’s needed is
to save the image using “Save As” or “Save For Web And Devices.”

Rinse and repeat for every image for your app or website. The technique is simple and
quick but requires a lot of repetitive work, and if you ever need to export the images
again, you’ll have to start from scratch.

Figure 7.26. Cutting up your design with “Copy Merged” is fairly easy: make the rel-
evant layers visible, draw a Marquee selection around your element, choose Edit →
Copy Merged, then File → New, hit Return, and then Paste.

CHAPTER 07 Designing for the Future, Using Photoshop

224

In my experience, this is the most common, and often the only, method that most de-
signers use, which is a shame because better techniques exist.

You could create an action that triggers the Copy Merged, New, Paste sequence, which
would be a small time-saver, although not much of an improvement to the workflow.1

EXPORT LAYERS TO FILES

If you are lucky to be exporting a lot of similar images (typically with identical dimen-
sions), you might be able to use Photoshop’s Export Layers to Files script.

By choosing File → Scripts → Export Layers to Files, each layer of your docu-
ment will be saved as a separate file, with a file name that matches the layer’s name.
This means you will probably have to prepare your document by flattening down to
bitmap layers all of the elements you’d like to export—a time-consuming process, but
often quicker than using Copy Merged. This can also trim the resulting file, if you’d
like to remove completely transparent areas. Export Layers to Files is handy if the
desired result fits its limited range of use cases.

1 You can use my action for Copy Merged at smashed.by/copyaction.

Figure 7.27. By choosing File → Scripts → Export Layers to Files, each layer of your
document will be saved as a separate file, with a file name that matches the layer’s name.

Designing for the Future, Using Photoshop CHAPTER 07

225

SLICES

Photoshop’s Slice tool lets you define rectangular areas to export as individual images,
with some limitations: only one set of slices can exist per document, and slices may not
overlap (if they do, smaller rectangle slices will be formed). During the 90s, the Slice
tool was a good way to create table-based Web layouts filled with images. These days,
we need finer control over how images are sliced, especially if we want our designs to
be efficient and dynamic, with images that have transparency. However, with a twist
on the concept, the Slice tool can be put to great use.

SPRITE SHEETS WITH SLICES

Sprite sheets are commonly used in CSS and OpenGL games, where texture atlasing
can have significant performance benefits (a texture atlas is a large image that contains
small images within it). This can be advantageous for websites because only one image
needs to be sent to the Web browser, saving on HTTP requests. A similar performance
boost occurs with OpenGL games, where a single file stored in the GPU’s memory can
be used to reference a lot of smaller images contained within it.

A visually similar method can be employed to export UI elements from Photoshop,
even if the result is a set of images rather than one large image.

Figure 7.28. Sprite sheets require time to set up, but help automate image exporting.

CHAPTER 07 Designing for the Future, Using Photoshop

226

By spreading out the elements that you need to export as a flat sprite sheet, you negate
the need for slices to overlap. If there are too many elements to comfortably fit in one
document, then you can create multiple documents, negating the need for more than
one set of slices per document.

The bonus to working like this is that you no longer need to build your main design
documents with the same level of precision. Occasionally using a bitmap or forgetting
to name a layer is fine because you will have a chance to fix things when preparing
your sprite sheet to export. But this does mean that your original mockup document
could get out of sync with your latest changes to the export documents (if you make
color or layer effect changes, for example).

Because we are interested only in user-created slices, you might also want to click
“Hide Auto Slices” (in the options bar when using the Slice Select tool) and turn off
“Show Slice Numbers” (under “Guides, Grid & Slices” in Preferences) to remove un-
necessary clutter from Photoshop’s slices UI. After creating a sprite sheet with slices
all set up correctly, you will be able to export all of the images at once, using “Save for
Web & Devices.” And assuming you’ve done things properly, you will be able to scale
up by 200%, save all of your Retina images, and then add @2x to the file names by batch
renaming them (or scale down, if you built everything at Retina size to begin with).

Figure 7.29. After creating a sprite sheet wth slices all set up correctly, you will be able
to export all of the images at once, using “Save for Web & Devices.”

Designing for the Future, Using Photoshop CHAPTER 07

227

LAYER BASED SLICES

If your UI element is one layer and you would like the exported image to be as small as
possible, you might want to consider using a Layer Based Slice. To create one for the
currently selected layer, choose “New Layer Based Slice” from the Layers menu. Layer
Based Slices move, grow and shrink with the layer that they’re linked to. They also take
into account layer effects: strokes and shadows are included and so increase the size of
the Layer Based Slice. Less control, but more automated.

MY EXPORTING WORKFLOW

For years, I used “Copy Merged” as my primary exporting method and used “Export
Layers to Files” when doing so made sense. That was a poor choice. Sprite sheets have
so many advantages, especially for medium-sized and large projects, that the initial
set-up time is made up for very quickly. This is even truer when exporting multiple sets
of images for different pixel densities; each set can be exported in a few clicks and is far
less likely to have problems with its file name or size, due to the automated process.

It also fosters an environment in which making changes to production assets is
easy, allowing for faster iteration and more experimentation. It lowers the barrier to
improving your artwork during development and for each revision of your app or web-
site. And that is a very good thing.

Comparison and Adjustments
Having spent time sweating the details, we now have to ensure that the final product
matches the mockups from Photoshop. My preferred method of checking the live app
or website for errors is to take a screenshot, open it in Photoshop, and then place the
original mockup over top, with the green channel removed. This can be done from the
Blending Options in the Layer Style window.

This works incredibly well for predominately neutral designs. Where there is a dif-
ference, the original mockup will appear green and the live app or website will appear
magenta. Spotting the differences, measuring the changes required and sending a note
to the developer (or doing the tweaks yourself if you are the developer) is easy.

CHAPTER 07 Designing for the Future, Using Photoshop

228

As you’re comparing, the text in the final product will probably look quite different
from the text in the mockups in Photoshop or Illustrator. This is to be expected. iOS,
Android, Windows Metro and all Web browsers render text differently, sometimes
subtly, sometimes radically.

New Challenges
The world of software and, by extension, software design has always been in flux. New
technology and new capabilities bring with them new challenges. But the current list
of challenges faced by software designers is as long and complex as it has ever been.

Along with our more familiar creative challenges, we must now face the technical
challenges that high-pixel-density displays have created. In a lot of ways, our designs
are becoming codified. They’re machines; they need to be scaleable and liquid. They
also need to retain the human element because humans are who they speak to. I hope
this chapter has helped you prepare to meet these new challenges.

Figure 7.30. Disabling the green channel makes it easy to see the difference be-
tween the mock-up and the real app.

Designing for the Future, Using Photoshop CHAPTER 07

229

About the Author
Marc Edwards (@marcedwards) is the director and lead designer at
Bjango, an independent Mac and iOS development company based
in Australia. Marc co-hosts the Iterate podcast, occasionally speaks
at conferences, and writes design articles for Smashing Magazine
and on Bjango’s website. (Photo: Matt Adams)

About the Reviewer
Jon Hicks (1972) was born in Leamington Spa, England. Nowadays,
he lives in a medium-sized market town just outside of Oxford. It is
right on the edge of a beautiful area called The Cotswolds, and it’s a
great place to bring up the family and go out riding! He loves cycling
and bike geekery in general, as well as all things lego and Dr. Who.
Jon has been working as a designer for 18 years, 10 of those as a
freelancer. He is known for the Firefox, MailChimp and Shopify logos,
but he works in a variety of media. Jon has two guinea pigs (Tom Tom
and Tufty) and a golden retriever named Olive. His favorite colors are
orange and black. The biggest lesson he has learned in his career is
to spend time mucking about on small personal projects. If you can,
dedicate a half day every week to just experimenting; it always pays
dividends. He follows this maxim in life: You reap what you sow.

Redesigning With
Personality

Written by Aarron Walter
Reviewed by Denise Jacobs

Redesigning With Personality CHAPTER 8

CHAPTER 08 Redesigning With Personality

232

edesigning a website can be the seven-layer taco dip of hell. You’ve searched
for inspiration on dozens of websites, captured screenshots, jotted down
notes, consulted friends and colleagues, maybe even interviewed users. But

despite your due diligence, your vision for the new website remains unclear.
I feel your pain, my friend. I have been there many times. A redesign brings with it

the pressure to innovate, to reimagine, to make a better version of the website so that it
lasts for years to come. It can be paralyzing.

Whether the website is for a client or for yourself, if you’re struggling to find your
way, it’s probably because you are starting from the wrong place. The inspiration you
seek is not where you think it is. It’s not in a blog post entitled “25 Amazingly Beautiful
Websites.” It’s not in your Twitter stream, nor on Facebook. It’s not even on the Web. It’s
right there on your seat. It’s you.

Just for a moment, stop thinking about HTML semantics, CSS magic and jQuery
tricks. Instead, ask yourself, “Who am I, and what do I want to say?” What do you stand
for, what’s important to you, and who are you speaking to? Let’s make the answers to
these questions the trailhead of your redesign journey.

We Web designers have many tantalizing tools at our fingertips, and because the
Web is a large community centered on sharing, new ideas and fancy techniques enter
our field of vision daily. But in this chapter, I would like to turn your gaze from those
shiny objects and focus it on what we’re really trying to do with our medium. Our true
aim is to communicate clearly and to create human connections.

We achieve that goal not by collecting bells and whistles for our next project, but
by discovering who we are and what our message is. The interfaces we design are not
walls upon which our users click and tap. They are windows through which we show
the world who we really are. As we will see in the principles and examples to come,
sharing our personality can help us create lasting relationships with the people who
use our websites, and it can improve the bottom line of our business.

Personality will set your brand apart from competitors and help you connect with
a passionate audience. Making personality central to the ethos of your redesign might
sound scary, especially if you’re working with a big corporation accustomed to speak-
ing like the Borg.1 But even the biggest corporations can communicate with a human
voice.

1 Wikipedia: Borg (Star Trek), smashed.by/borg	

R

Redesigning With Personality CHAPTER 08

233

Who Are “They”?
Big redesign projects often begin by researching users. We sit down with people to dis-
cuss their goals for our website and the expectations they have; we look at demograph-
ics, analytics and search logs. It is a lot of data to sift through, but it’s not idle footwork.
From this research we can create portraits of our archetypal users. This dossier on
individuals in our target audience is called a user persona. It answers an important
question in the redesign process: who are “they,” the people we’re communicating
with, and what do they expect of us?

Chances are, if you’ve spent even a little time working in Web design, you have
probably heard of user personas. Maybe you’ve even created a few. We have been ask-
ing ourselves “Who are they?” since Alan Cooper introduced user personas to interac-
tion design in 1995, and they have been a staple of user-centered design ever since. If
personas are new territory for you, you will find a concise introduction to the topic in
The Project Guide to UX Design2 by Russ Unger and Carolyn Chandler. If you would like
to dig deeper into user research, check out Alan Cooper’s industry-changing book The
Inmates Are Running the Asylum.3

With personas in hand, we have a solid starting point for a redesign. But something
is missing. Personas show us only half of what we need to see. Truly effective commu-
nication is bidirectional. We now know who “they” are, but who are we? If we share a
bit of ourselves in our design, we can not only gain the trust of our audience, but also
inspire impassioned users.

PERSONALITY

Lasting relationships center on the unique qualities and perspectives we all possess.
We call this amalgam of traits personality. Through our personality, we express the
entire gamut of emotions. Personality is the mysterious force that attracts us to certain
people and repels us from others. It is like a signpost for compatibility, stirring an emo-
tional response that we cannot ignore.

We have all experienced the magic of meeting someone whose personality capti-
vates us. A chance encounter brings us together, and the magnetism of our person-
alities keeps us together. Personality helps our brains perform a simple cost-benefit
analysis when we meet someone.

2 Unger, Russ and Chandler, Carolyn. “A Project Guide to UX Design: For user experience designers in the
field or in the making,” New Riders Press, 1st edition, 2009
3 Cooper, Alan. “The Inmates Are Running the Asylum,” Sams - Pearson Education, 1st edition, 2004.	

CHAPTER 08 Redesigning With Personality

234

Figure 8.1. A persona paints a portrait of an archetypal user in our target audience
and informs our design decisions. This one was created by Todd Zaki Warfel of
messagefirst.com.

Redesigning With Personality CHAPTER 08

235

Though we may not always be conscious of it, we evaluate the world around us with a
simple question, “Is this good or bad for me?” Personality provides us with all of the cues
we need to determine whether a relationship with a new acquaintance is in our best
interest or could be harmful. Because personality plays such an important role in our
decision-making process in our social circles, it can be a powerful tool in design as well.

A LONG TIME AGO IN A GALAXY FAR, FAR AWAY

It wasn’t that long ago when those of us publishing on the Web felt compelled to inflate
ourselves for the public. Did you have a website in the late 1990s during the dot-com
boom? I did, and like so many others, I wrote copy for my websites in the royal “we” to
give the impression that I had a corporation as big as iXL or Razorfish (kids, go ask your
parents). Throw in stock photography of fictitious partners and meetings, and you’re
on your way to transforming a one-man show operating out of a bedroom into a global
corporation.

It was a facade I had created because I believed no one would take me seriously if
I was honest. I wasn’t the only one duping my audience. At the time, most small busi-
nesses and freelancers were painting a picture of corporate grandeur when there was
nothing but one or two individuals behind the curtain.

Things are different these days. We’ve opened up our lives to the world on Twitter,
Facebook and other social media. We no longer maintain separate personas for our
personal and professional lives. The line that once separated them is now blurred, and
we now offer one authentic personality for the world to experience, for better or worse.

Because we’ve opened ourselves up to one another, we have come to expect the same
of the brands we interact with. In a consumption-centric world where products are
pushed on us and companies are always taking instead of giving, we crave real human
interaction that is reciprocal and respectful.

A few companies have figured this out and are forging emotional connections with
their customers by sharing their personality. We have now come to expect this of
small startups, such as Carbonmade,4 a zany Web app that helps designers create a
portfolio, and Photojojo,5 a playground for photographers. These companies are free of
corporate constraints and brimming with youthful creativity. Their design and mar-
keting are filled with wit that sets them apart from competitors. But personality is a
powerful design tool that works even with gigantic conglomerates.

4 smashed.by/carbon
5 smashed.by/jojo

CHAPTER 08 Redesigning With Personality

236

General Electric, a Fortune 100 company with 287,000 employees (making it, um, 36
times bigger than the town where I grew up), dwarfs nearly every company on the
planet. Most corporate behemoths like to market themselves with generic copy, stock
photography and whitewashed promises, but GE is trying something different. It is
telling stories through the eyes of its employees about how it is changing the world.

In a video on GE’s home page,6 workers from Durham, North Carolina, share with us
a glimpse of the work they do to create massive jet engines that lift commercial air-
planes 3,000 feet in the air. The video is not about the mind-boggling complexity of the
technology that goes into the engines, though, but a collection of personal stories about
Seth, Mark, Kareem, Tom and their colleagues putting their hearts into their work. The
stories express their love for what they do. It is clear that this small team of individuals
goes to work each day not just for a paycheck, but because they feel a sense of responsi-
bility and because they care for the passengers that their engines carry.

6 ge.com

Figure 8.2. Carbonmade and Photojojo both have distinct personalities that set them
apart from competitors and attract impassioned users.

Redesigning With Personality CHAPTER 08

237

As the video concludes, the team members are taken to a runway where they get to see
a jet outfitted with their engines take flight. All stand rapt as the jet makes its ascent.

Tears spill from the eyes of one man who is overcome with pride. The honesty in
their message and their earnest delivery make it hard for viewers not to feel emotion-
ally engaged and inspired.

Products Are People, Too
Personality determines how we express emotions and the degree to which we do it. It’s
the framework within which we share jokes, select our circle of friends and even find a
mate. It is at the heart of all human interaction.

Steven Pinker, Johnstone Family Professor in the Department of Psychology at
Harvard University, points out in his bestselling book How the Mind Works,7 “Much of
the variation in personality—about fifty percent—has genetic causes.” That’s right: the
moment you enter this world, half of your personality is already predetermined.

7 Pinker, Steven. “How the Mind Works,” W. W. Norton & Company, Reissue edition, 2009. 	

Figure 8.3. GE shares personal stories on its home page from the individuals who
make its products. The company’s personality shines through in individuals who
have a passion for their work.

CHAPTER 08 Redesigning With Personality

238

The other half is primarily shaped by social and cultural influences. Only about 5% of
your personality is influenced by your parents’ nurturing. As a dad, I find this pain-
fully depressing. The fact that so much of our personality is genetic indicates the extent
to which it shapes our lives and ensures our survival.

So what if the websites, products and services we design could be imbued with
personality? Personality is a natural interface that is familiar to humans. We already
know how to respond to people we meet based on cues from their tone of voice, lan-
guage, appearance and posture. We process this information subconsciously and
behave accordingly. If we detect courteousness and trustworthiness in a person, then
we might share more of ourselves and linger in conversation. If a person is rude or
suspect, we are likely to make excuses for a sudden departure.

The cues we naturally take from people’s personalities can also come through in
design. Color, type, imagery, copy and interaction patterns can all serve as channels for
a personality. Just as our personality influences the behavior of the people around us,
personality in design can shape the behavior of visitors to our websites.

There are four key benefits to expressing your personality in design:

1.	 In a crowded market, personality helps distinguish you from competitors.

2.	 Personality elicits an emotional response from the audience that encourages
long-term memory of your brand.

3.	 Personality attracts those who get you and deters those who don’t.

4.	 Personality impassions users, who will become your most powerful marketing
channel.

Let’s look at each of these in detail.

ONE OF THESE WEBSITES IS NOT LIKE THE OTHERS

No matter what kind of website you’re publishing, dozens of others like it are on the Web.
Put yourself in your audience’s position. How will they distinguish your website from all
of the others? What makes yours different? The travel-booking company Hipmunk8 care-
fully considered these questions before launching into a very competitive marketplace.
Travelocity, Orbitz, Expedia and several others have had a tight grip on online travel
booking for some time, but Hipmunk has managed to stand out from the crowd.

8 smashed.by/hipmunk	

Redesigning With Personality CHAPTER 08

239

Visit a few well-known travel websites and you’ll see common traits among them that
express something about their personalities. Advertisements for last-minute travel
deals and money-back guarantees litter their home pages, each distracting users from
the central goal of the page, which is to get them to book a flight. Each of these elements
is asking something of users. “Gimme, gimme!” they scream.

I hate making travel plans because it’s such a stressful experience. Coordinat-
ing schedules, figuring out time constraints, paying high fees for basic services, and
fearing the airline will once again screw something up—all leaving me frazzled and
gun-shy.

This emotional state is not helped by the attention-assaulting design of most travel
websites. A calm, focused personality is the best medicine for a stressful situation. That
is exactly what Hipmunk offers on its website. Its home page is squarely focused on one
thing: choosing a flight. A cheery chipmunk adds much-needed levity to an otherwise
stressful interaction. No discount offers distract users or add to their stress.

Hipmunk’s search results are equally as focused, showing an empathy for users
that is unseen in any competitor. Instead of simply listing flights by time and airline,
it presents an “Agony” index, showing users which flights will be the most painful.
Flights with early departures, late arrivals or long layovers rank higher in the Agony
index. One could argue that this feature is simply a clever design pattern, but some-

Figure 8.4. Hipmunk’s cheery personality and focus on one task are the perfect rem-
edy for the stressed-out emotional state of so many users of travel-booking services.

CHAPTER 08 Redesigning With Personality

240

thing more is going on. The Agony index literally communicates to users that Hipmunk
is sympathetic: it feels your pain.

Very few websites possess these traits. Just as an act of kindness on the street says
something about the individual who extends it, sympathetic interaction design can convey
a designer’s compassion for their audience. It’s the sort of thing users will not soon forget.

I Remember
Emotional experiences make a profound imprint on our long-term memory. Both the
generation of emotion and the recording of memories happen in the limbic system,
a collection of glands and structures under all of the folded gray matter of the brain.
There is a good reason why the limbic system unites these essential functions. The brain
couples emotion and long-term memory because, otherwise, humans would be doomed
to repeat negative experiences and would not be able to consciously repeat positive ex-
periences. As John Medina explains in his book Brain Rules: 12 Principles of Surviving and
Thriving at Work, Home and School,9 our brains take note of emotionally charged events:

“The amygdala is chock-full of the neurotransmitter dopamine, and it uses do-
pamine the way an office assistant uses Post-It notes. When the brain detects an
emotionally charged event, the amygdala releases dopamine into the system. Be-
cause dopamine greatly aids memory and information processing, you could say the
Post-It note reads “Remember this!” Getting the brain to put a chemical Post-It note
on a given piece of information means that information is going to be more robustly
processed. It is what every teacher, parent, and ad executive wants.”

Experiences that lack an emotional charge tend to fade from memory. Thus, conserva-
tive, familiar designs are likely to be forgotten. Medina eloquently sums up the main
reason why we designers should employ personality and emotion in design: “The brain
doesn’t pay attention to boring things.” When we design with personality, we are build-
ing a framework through which emotional experiences will remain in the memories of
our users.

I’ll be honest: there is some risk in designing with personality. Not everyone will
like the result. But if you design to please everyone, you will please no one. As we will
see in the next section, an interesting dichotomy of positive and negative emotions is
elicited by the expression of personality.

9 Medina, John. “Brain Rules: 12 Principles for Surviving and Thriving at Work, Home, and School,”
Pear Press, Reprint edition, 2009.	

Redesigning With Personality CHAPTER 08

241

I LOVE YOU, I HATE YOU

It’s OK if some people hate your redesign and do not connect with the personality you’re
sharing. That’s a sign that you are indeed engaging with your audience on an emotional
level. Disdain is always better than apathy.

Showing personality in your design always carries some risk. Some people will feel
very connected to it, while others will be turned off. When you share a bit of yourself
with the world, someone is not going to like you. But that’s fine. The people who are
turned off by your personality are not the people you want to court. They are the ones
who would cause the most problems in your product support queue or who would con-
stantly insist that you change your product into something it isn’t.

If you’re a freelancer or agency on the hunt for new projects, you can ward off
clients from hell by expressing your personality on your website. The people who are
turned off by your website will not want to work with you—and I can tell you from
experience, that’s not a bad thing!

Even the design process we typically follow for a project reminds us that we are not
designing for everyone. The reason we do user research is to find out who we’re actual-
ly designing for. If the goal was to design for everyone, research would be unnecessary.

In our personal lives, we have all encountered individuals with whom we just don’t
see eye to eye. Although painful to accept, some people not liking our personality is
perfectly fine. It is a fool’s game to try to cater to the desires of every person we en-
counter. The best we can do is be ourselves and trust that some people on this planet
will accept us as we are. (OMG! Did we just sneak a life lesson into a Web design book?)

This lesson holds true with design. Personality will help you filter the audience
down to those with whom you share common values, interests and goals. These folks
are your passionate users. They are the ones to cater to, and they will express their love
for your brand openly.

As the user experience lead at MailChimp, I’ve seen this first hand. The humor, bon-
mots and good times I experience every day with my colleagues is visible in the copy,
illustrations and interaction design of the stuff we make. The quips of Freddie von
Chimpenheimer IV, our chimp mascot, that sit atop each page of the app are collected
from people in the company, providing a snapshot of our sense of humor. When you
interact with MailChimp, you interact with the people who make it.

We have heard from a few people that the humor woven into the interface is dis-
tracting or annoying. When you put your personality out there, that kind of feedback
can sting.

CHAPTER 08 Redesigning With Personality

242

We were concerned that these perceptions were widely held by our users, so we did
some research. We created an option called Party Pooper mode, which disables Fred-
die’s jokes and buttons up the informal copy throughout the app. After tracking its
usage, we discovered that only 0.007% of our customers actually turned off our person-
ality. The lesson learned was that a bit of criticism is no reason to stop being yourself.

We have found that expressing our personality in the things we make has over-
whelmingly greater benefit than risk. It distinguishes our brand from competitors; it
helps our customers remember their experiences with us; and it makes many of our
customers fall in love with our products. Oh, and it doesn’t exactly hurt your market-
ing budget either, as we will see in the next section.

YOUR USERS HAVE A WAY WITH WORDS

Personality in design will help spread the word about your website, no ad campaign
required. Wufoo,10 creator of a Web app that makes it easy to build Web forms and to
manage the data they collect, eliminated its marketing budget entirely when it discov-
ered that users market the app for it.

10 smashed.by/wufoo

Figure 8.5. Wufoo’s unique approach to designing a business-focused Web app has elicited ad-
miration and joy in customers, who are anxious to tell the world about their positive experiences.

Redesigning With Personality CHAPTER 08

243

Tweets, blog posts and word of mouth brought in new users more effectively than ban-
ner ads. Its youthful design, witty copy and occasional rogue dinosaur set Wufoo in
stark contrast to its competitors, which are much more reluctant to express personal-
ity. When using Wufoo, we can easily see the personalities of the people who made it.11

Having a product that is beloved by users and that grows constantly by word of
mouth made Wufoo an attractive acquisition for SurveyMonkey,12 which purchased it
in 2011 for an estimated $35 million.

PERSONALITY: NOT JUST FOR DESIGNERS ANYMORE

Respected user experience designers such as Stephen Anderson and Andy Budd have
been thinking and talking about the connections between personality, emotion and
design for a few years now. The topic has gained traction with designers. But we are not
the only ones who recognize the power of personality in a crowded marketplace. The
people who fund startups are getting it, too.

On his blog, Fred Wilson, venture capitalist and principle of Union Square Ven-
tures, advocates for clarity of voice and personality in product design, suggesting that
the two are “critical to building a successful product.”13

Dave McClure, angel investor and founder of the business incubator 500 Startups, is
of the same mind. He sees personality and emotion as important factors in the success
of a product. In his talk at the Warm Gun conference in 211, McClure told designers
and entrepreneurs, “Be yourself, your super-self. What can you be authentic about and
comfortable with? Find an essence that you think is you and amplify it. Find a feeling
or emotion that you can sustain.”14

Business news outlets are exploring the role of personality in design, too. Forbes
contributor Anthony Wing Kosner attests that personality can make a website more
memorable:

Why are some companies’ websites more memorable than others? On the surface, it 	
might seem to have to do with originality, visual impact and branding. But what if I 	
were to tell you that the most important factor is how a site makes a visitor feel?15

11 As mentioned in Dmitry Fadeyev’s chapter, Wufoo goes beyond the usual to make its personality really 	
 stand out by sending out handwritten thank-you cards to their best customers. 	
12 smashed.by/monkey	
13 Wilson, Fred. “Minimum Viable Personality,” smashed.by/mvp
14 Wroblewski, Luke. “Warm Gun: Designing for Emotion,” smashed.by/warmgun
15 Forbes, “Why Does Emotional Design Work on the Web,” smashed.by/forbes

CHAPTER 08 Redesigning With Personality

244

Wilson, McClure and Kosner are all describing something we saw earlier in this chap-
ter. GE made its giant corporation feel more human by sharing the individual personali-
ties of its workforce. It showed us the passion and pride it has for its craft, and we felt it.

The informal personality of Hipmunk’s website allays the stress and negativity that
so many travellers feel when booking a flight. The Agony index literally ranks results
based on emotional response, which not only helps customers make a decision, but
makes them grateful for Hipmunk’s empathy.

And Wufoo eliminated its entire marketing budget after realizing that passionate
users were spreading the word for it. The personality in its app brightens the day of
thousands of workers who carry out the data-collection orders of their corporate over-
lords while festering in gray cubicles. The levity, color and personality of Wufoo are to
users as water is to a desert wanderer.

Once upon a time, personality and emotion in design were a novelty of small-scale
websites powered by one or two creative individuals. Today, we are seeing personality
being carefully infused into the websites of many brands, small, gigantic and every-
thing in between. Designers are not the only ones who see the value in making the user
experience more human; investors now recognize that personality is a key factor in
the success of a product.

However, starting a redesign by thinking about personality can be nebulous. Clear-
ly defining the traits of your personality before jumping into Photoshop or Illustrator
would be more helpful. That is exactly what a design persona is for.

DEFINING YOUR PERSONALITY WITH A DESIGN PERSONA

Earlier in the chapter we talked about the user persona, which is like a dossier of your
archetypal user. It answers the question, “Who are they?” A design persona flips that
question on its head, asking, “Who are we?” Both user and design personas set the pa-
rameters for the design process. They help us overcome blank-canvas syndrome.

With so many possibilities, where do we start? By understanding both your users
and yourself, the options are no longer vast, and the direction is clearer.

Think about it: if your website were a person, who would it be? Would the person
be a serious, buttoned-up, all-business type, yet trustworthy and capable? Or a wise-
cracking buddy who makes mundane tasks fun? A design persona is a document that
outlines the key traits of the personality you wish to convey in a design. We’ll look at a
real-world example of a design persona momentarily, but let’s first look at the structure
of the document.

Redesigning With Personality CHAPTER 08

245

A design persona has nine parts:16

1.	 Brand name
The name of your company or product.

2.	 Overview
A short overview of your brand’s personality. What makes it unique?

3.	 Personality image
This is an actual picture of a person who embodies the traits you wish to con-
vey. This makes the personality less abstract. Pick a famous person or someone
with whom your team is familiar. If your brand already has a mascot or repre-
sentative that does this, use it. Describe the attributes of the mascot that com-
municate the brand’s personality.

4.	Brand traits
List five to seven traits that best describe your brand, along with one trait
you want to avoid. This will help those who design and write the website to
construct a consistent personality, while avoiding traits that would take your
brand in the wrong direction.

5.	 Personality map
We can map this personality on a graph. The x axis ranges from unfriendly to
friendly, and the y axis ranges from submissive to dominant.17

6.	Voice
If your brand could talk, how would it speak? What would it say? Would it
speak in a folksy vernacular or a refined style? Describe the particular aspects
of your brand’s voice and how it might change in various situations. People
change their language and tone to fit the situation, and so should your brand.

7.	 Copy examples
Provide examples of copy that might be used in different scenarios on your web-
site. This will help the writers understand how the design should communicate.

8.	Visual lexicon
If you are creating this document for yourself as the designer or for a design
team, develop a visual lexicon that summarizes the colors, typography and

16 Download a template for user personae from smashed.by/persona.
17 To learn more about personality mapping and the research behind it, see “Emotional Design With A.C.T.: 	
 Part 1” by Trevor van Gorp on Boxes and Arrows: smashed.by/emodesign.

CHAPTER 08 Redesigning With Personality

246

visual style of your brand’s personality. You can be general in concept or in-
clude a mood board.

9.	Engagement methods
Describe the methods by which you might emotionally engage users in order to 	
create a memorable experience. Stephen Anderson’s Mental Notes card deck is
a handy collection of such methods.18

CREATING YOUR DESIGN PERSONA

The process of creating a design persona is as valuable as the document itself. When
you stop to consider the traits you want in the design, you gain clarity of what you
wouldn’t have had, had you jumped straight into your favorite design app. Defining
a personality through a team brainstorming session will help the writers, designers,
information architects and developers think about your website as a person and recog-
nize the boundaries they are working within.

To get started on your design persona, download the template and sample files
first.19 If you’re working on a team, gather everyone together with some snacks and a
whiteboard to work through the initial ideas of the persona. It’ll be fun—and a cooler
full of adult beverages wouldn’t hurt either.

Start the discussion by asking, “What seven words best describe who we are?” Be
honest. You might hear some traits mentioned that you’re not proud of. Now tweak the
question: “What seven words best describe who we hope to become with this rede-
sign?” Redesigns are inherently aspirational, and being specific about your aspirations
early on is helpful.

Now look for overlap between the two lists. Discuss how you might go about trans-
forming the traits you don’t like into some of the aspirational traits. If the remaining list
contains more than seven traits, continue whittling it down to seven or fewer, because a
personality can become diluted and insincere if you try to be everything to everyone.

With the final list of traits scribbled on the whiteboard, reflect on the boundaries of
each trait. What don’t you want your personality to become? For instance, if you have
listed “fun” as a trait, that can mean a lot of things. Is it fun like Tickle Me Elmo, or fun
like driving a Ferrari California along the winding Blue Ridge Parkway? Boundaries
add clarity to a design persona and will help you see when a line has been crossed dur-
ing the project.

18 Anderson, Stephen P. “Mental Notes,” smashed.by/notes.
19 smashed.by/persona

Redesigning With Personality CHAPTER 08

247

To get a better sense of how traits and boundaries work, let’s look at the ones we de-
fined for MailChimp’s persona:

1.	 Fun but not childish,

2.	 Funny but not goofy,

3.	 Powerful but not complicated,

4.	 Hip but not alienating,

5.	 Easy but not simplistic,

6.	 Trustworthy but not stodgy,

7.	 Informal but not sloppy.

A little list like this one is a value system. It tells you who you are, guides your voice
and helps shape the audience’s perception of your brand.

Now that you know what personality traits you want and don’t want, can you think
of a person—either a celebrity or someone you know—who could serve as a common
reference point for you and your team? Putting a face to these traits will make it even
easier during the design process to answer the question, “What would my persona do
in this situation?”

Write an overview of this personality to flesh it out further. Describe the voice of
the personality, and write out examples of copy to illustrate. How would the personal-
ity manifest itself in color, typography and visual style? At the end of this exercise, you
will have learned a lot about your starting point for the design.

When creating a personality for your website, keep one important rule in mind.
Make the personality an honest reflection of the company you’re working for or your-
self. You will have a hard time staying true to the design persona if the personality is
a stretch. In all of the examples we saw earlier in this chapter, the personalities of the
people who created the websites were evident. They were not idealistic concoctions.

We can tell in an instant when a person is pretending to be someone they aren’t, and
the same holds true in design. The whole point of conveying personality in design is to
share more of ourselves so that we can forge meaningful connections with other people.
Faking it won’t work; not only is it difficult to do, but you’ll miss out on connecting with
your ideal audience.

When we created our design persona at MailChimp, we were simply document-
ing the collective personality of the people on our teams. Actually, we found that the

CHAPTER 08 Redesigning With Personality

248

exercise wasn’t difficult because we had hired like-minded people with similar senses
of humor and complementary personalities. Although our primary goal in putting
together a team was to find people who would work well together, the process turned
out to be helpful for defining the brand’s personality, too. Here’s the design persona we
created for ourselves:20

Brand name

MailChimp

Overview

Freddie von Chimpenheimer IV is the face of MailChimp and the embodiment of the
brand’s personality. Freddie’s stout frame communicates the power of the application,
and his on-the-go pose lets people know that this brand means business.

Freddie always has a kind smile that welcomes users and makes them feel at home.
The cartoon style communicates that the brand offers a fun and informal experience. Yes,
he’s a cartoon ape, but Freddie is still cool. He likes to crack witty jokes, but when the situ-
ation is serious, the funny business stops.

MailChimp often surprises users with a fun Easter egg or a link to a gut-busting You-
Tube video. Fun is around every corner, but never gets in the way of the workflow.

Brand traits

Fun but not childish. Funny but not goofy. Powerful but not complicated. Hip but not
alienating. Easy but not simplistic. Trustworthy but not stodgy. Informal but not sloppy.

Voice

MailChimp’s voice is familiar, friendly and—above all—human. The personalities of
the people behind the brand shine through honestly. MailChimp cracks jokes (ones
you can share with your mom), tells stories and communicates in the folksy voice you
might use with an old friend.

MailChimp uses contractions like “don’t” instead of “do not” because that’s how real
humans speak to one another. MailChimp uses casual interjections, like “Hmm” when
he’s thinking hard, and “Blech! That’s awful” to communicate empathy.

20 You can download this example from smashed.by/mailchimp.

Redesigning With Personality CHAPTER 08

249

Copy examples

•	Success message: “High fives! Your list has been imported.”

•	Error message: “Oops! Looks like you forgot to enter an email address.”

•	Critical failure: “One of our servers is temporarily down. Our engineers are al-
ready on the case and will have it back online shortly. Thanks for your patience.”

Visual lexicon

•	Color: MailChimp’s bright yet slightly desaturated palette conveys fun—
although not to the point of being Romper Roomy. In line with the brand’s
traits, the colors convey humor and yet are powerful and refined.

•	Typography: MailChimp is easygoing, efficient and simple to use, and its
typography reflects this. Simple sans-serif headings and body copy vary ap-
propriately in scale, weight and color to communicate information hierarchy,
making MailChimp feel like a familiar, comfortable cardigan that is both func-
tional and beloved.

•	General style: Interface elements are flat and simple, keeping everything easy
to understand and unintimidating. Soft, subtle textures may appear in spots to
warm up the space and make it feel human. Freddie should be used sparingly,
and only to inject a bit of humor. Freddie never gives application-related feed-
back or statistics, nor does he help with tasks.

Figure 8.6. The design persona that was created to guide the personality of MailChimp.

CHAPTER 08 Redesigning With Personality

250

Engagement methods

•	Surprise and delight: Themed log-in screens commemorate holidays, cul-
tural events and beloved figures in history. Easter eggs create unexpected
moments of humor, sometimes conveying nostalgia or referencing kitschy
pop culture.

•	Anticipation: Freddie’s random funny greetings at the top of each main page
create anticipation for the next page. These greetings do not provide informa-
tion or feedback; they are a fun layer that never interferes with functionality
or usability. We created this design persona primarily to guide the design of
the application. It helped us dial in the voice we wanted for important elements
such as success and error messages, and it
helped us reconsider small design elements
that were starting to deviate from our per-
sonality.

The design persona is not a style guide. It’s not in-
tended to dictate how a logo can or cannot be used.
It contains no color or typography specifications. It
is simply a summary of the spirit of a design. When
creating a design persona, you discover so much
about yourself and your colleagues, which you can
then share with your audience. It’s not a document
to be policed, but rather a compass to keep you
pointed in the right direction.

With personality on our minds, we started to
recognize its presence in everything we were creat-
ing, especially our writing. Blog posts, product copy,
knowledge-base articles and support guides all
convey our personality. We didn’t always do a great
job of it, though. We were injecting humor at inap-
propriate times. When a user is stressed out because
they can’t figure out a workflow that they desper-
ately need to complete in order to meet a deadline, a
joke or informal tone is not welcome.

Figure 8.7. Freddie von Chimpen-
heimer IV, MailChimp’s mascot.

Figure 8.8. MailChimp’s personal-
ity map.

Redesigning With Personality CHAPTER 08

251

While the design persona helped to establish our voice, we found that further clarity
was needed. Our content curator, Kate Kiefer-Lee, discovered that although a brand’s
voice must remain consistent in design and writing, the tone should change to match
the emotional context of users. Determining the relationship between voice and tone is
tricky, but Kate found an interesting solution.

DEFINING VOICE AND ADAPTING TONE

Have you ever tried to write a style guide that sets the design or writing standards for a
company? Style guides identify a myriad of scenarios in which design or copy might get
mangled, and they provide a framework within which everyone on a team can stay on
the same path.

Many redesigns start with a well-intentioned style guide, but more often than not
it’s abandoned because having to constantly refer to it is impractical, and it makes
people feel like the creativity police are peering over their shoulder. Kate Kiefer-Lee
penned the content style guide for us to help current and incoming writers, and she
had some reservations about how colleagues would receive it. Would people actually
use it, or would it be seen as a burden? Having guidance on grammar and punctuation
was handy, but the essence of what she wanted to communicate to the team was the
relationship between voice and tone.

As Kate combed through blog posts, the knowledge base, microcopy, tutorials and
guides to take stock of the company’s voice, she noticed areas where MailChimp’s voice
was clear but the tone was off.

Would you tell a joke while comforting a widow at a funeral? Would you use infor-
mal language when meeting the Queen of England? I hope not! You’d certainly want to
be yourself, but you would adjust your tone to suit the occasion.

In the design persona laid out above, a few examples of copy were included to show
the language style and, to some degree, the variance in tone for different situations. Er-
ror messages in an application are the wrong place for a joke because the user is likely
confused or stressed at the time. But a success message is a great place to employ humor
or an informal tone because the user has just had a positive experience.

Rather than write a formal style guide to govern communication, Kate decided to
take a different approach, one that would make understanding the voice of the brand and
the variations in tone easy and fun. With the help of some colleagues, Kate created Voice
& Tone,21 an interactive guide that ties tone of voice to the emotional state of readers.

21 smashed.by/voicetone

CHAPTER 08 Redesigning With Personality

252

This approach to defining personality and writing style has been well received; it’s easy
for people to understand, and it’s fun for people to use. It’s not full of rules and regula-
tions. No one wants to be governed by the personality police. This guide gives people the
freedom to write using the MailChimp voice while guiding tone in the right direction.

Kate sees a close connection between voice and personality: Voice is closely con-
nected to personality. It’s who we are. It’s our perspective and it’s what we bring to
every piece of content our customers are reading. Voice is from our end. It’s all about
us. And tone is something we adapt to match our readers’ feelings.

The examples of copy on Voice & Tone not only identify the feelings of readers in
particular situations, but are accompanied by matching colors on the page’s back-
ground. A red background indicates anger or frustration in the reader, while green
signifies delight or joy. Like any style guide, Voice & Tone helps authors establish and
maintain consistency, an often-preached brand trait that fosters customer trust and
strengthens relationships. But it also suggests that adaptability is important; rather
than being dogmatic about style, it simply illustrates the spectrum of communication
styles that writers can use in various situations.22

22 Check out the bonus content for this chapter: smashed.by/bonus.

Figure 8.9. Voice & Tone helps anyone who writes for MailChimp maintain the voice and
personality of the brand while adapting the tone to match the reader’s emotional state.

Redesigning With Personality CHAPTER 08

253

Conclusion
So often in our industry, the motivation for starting a project is to use a new technology
or technique. While expanding our skill set is lovely, technique is not the reason we fell
in love with this medium. The real reward of our work is the human connections we
build on the Web with our fellow designers and the people we design for. Sharing more
of ourselves on our websites amplifies those connections.

We’ve seen many examples of personality and many methods of cultivating it in this
chapter. Hipmunk expresses empathy for its users with its Agony index. Wufoo man-
aged to eliminate its marketing budget by sharing its personality in its interface and
letting customers spread the word. MailChimp shaped its personality through design
personas and an interactive writing guide.

These examples are shared here not to suggest that you do the same in your next
project, but to spark new ideas in your work and to help you see the power of personal-
ity in design. A design that conveys a clear personality stands out in a crowded market.
It elicits an emotional response from the audience that fosters long-term memory of
your brand. It attracts the people you want and deters those who will be burdensome.
And it impassions those users who will be your most powerful marketing channel.

Make the starting point of your next redesign this simple question, “Who am I, and
what do I want to say?” Once you’ve answered that, then design elements and a writing
style will emerge that bring out the personality at the heart of your work.

CHAPTER 08 Redesigning With Personality

254

About the Author
Aarron Walter was born after the dinosaurs but before the Web in
a town not far from where Captain Kirk will be born in 200 years.
His education includes a BFA degree in painting from the University
of Iowa and a MFA graduate degree in painting from Tyler School
of Art, Temple University. He lives in Athens, Georgia, where the
music is as beautiful as the people. Aaron is the leader of the User
Experience Design team at MailChimp. He has written two books,
the latest of which is Designing for Emotion (2011). Before joining
MailChimp in 2008, he spent eight years teaching interactive design
courses at a few colleges around the US. His favorite color is black,
and he dreams of becoming a barista when he grows up. As advice
to readers, he claims that trying is always better than wondering
“What if?”

About the Reviewer
Denise Jacobs (1968) was born in Springfield, Ohio, and gradu-
ated from Stanford University, the University of Washington in
Seattle and Université de Paul-Valéry, Montpellier 3 in France. The
motto of her life is, “Feel the fear and do it anyway.” Denise lives in
a medium-sized home close to Coral Gables in Miami, Florida. She
had almost completely landscaped her backyard in 2009—but
then started writing a book. She’s never been able to get the gar-
den back to its former glory since then, but she does have banana
trees, and her neighbor’s avocado tree is abundant.

Denise speaks at conferences and writes books and articles.
She designs stuff and likes to teach people stuff. Denise loves
organic gardening, making jewelry, dancing (especially samba and
salsa), improv comedy and acting, self-improvement and reading.
The most important lesson Denise has learned is that you just
can’t do everything. Trying to be super-human is vastly overrated,
and there is more to life than working. Her personal message to
readers is to follow your passions and your dreams, and dream
big. It will change your life for the better.

Mobile Considerations in
User Experience Design:
“Web or Native?”
Written by Aral Balkan
Reviewed by Josh Clark and Anders M. Andersen

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

256

s you probably know, user experience design is the discipline concerned
with all aspects of the design of interactive products. Although it incorporates
important elements of graphic design and motion design, it is primarily con-

cerned with the design of interaction. Its closest cousin in the design realm is product
design. As user experience designers, we design virtual products. Furthermore, since
hardware design and software design are so intrinsically linked and inseparable, the line
that separates product design from interaction design—if it exists at all—is a faint one.

A WEB DESIGNER IS A USER EXPERIENCE DESIGNER

Essentially, a Web designer is a user experience designer with specialized knowledge
of the medium of the World Wide Web. The materials of a Web designer are the core
(HTML, CSS, JavaScript) and auxiliary (LESS, Stylus, etc.; HAML, Jade, etc.; jQuery,
MooTools, etc.) frameworks of the Web and the components within those frameworks.
These frameworks and the components within them are made of code. It is this code
that determines the design limits and behavior of these materials.

Just as an automotive designer must have
intimate knowledge of the various materials
that go into making a car, so too must a Web
designer understand the materials that go into
a website or application.

As interaction designers, we are interested
not simply in the aesthetics of an interactive
object but in how it behaves. This is especially
important when you are designing applica-
tions (which are behavior-based objects) as
opposed to designing documents (which are
content-based objects).

DESIGNING DOCUMENTS VS. DESIGNING APPLICATIONS

Even designing interactive documents well—especially in a responsive manner for the
Web—requires specialized knowledge. At a bare minimum, it involves an understand-
ing of responsive design principles and progressive enhancement. Drawing pretty
pictures, on the other hand, is art, not design.

Interactive products or applications, however, are a completely different ball game.
Designing for an interactive medium requires skills in graphic design, motion design

A

Designing an application

is as much about draw-

ing a pretty picture of an

application as designing

a car is about drawing a

pretty picture of a car.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

257

and, most importantly, interaction design. The most important aspect of an interactive
product is its interactions. These interactions are constructed in code.

Unfortunately, due to increased specialization on teams, the role of Web designer
and Web developer has been artificially separated. While such a separation may be
necessary when working on a team, these labels should define the current tasks of the
team members, not sandbox their knowledge. You might focus on certain areas more—
especially in particular projects—but you must understand that the primary reason we
build products is to satisfy user needs and that every role on a development team has an
effect on the user experience. This is why working in small interdisciplinary teams is
imperative, where every member is responsible for always thinking of the user first.

DESIGNING FOR THE USER FIRST

When building a product, design leads develop-
ment and development informs design. This is a
cyclical, iterative process in which the goal is to
continually improve the product to better meet the
needs of users.1

Every decision you make for your product
should stem from the user. You must think of
the user’s needs first, before considering your
own needs. In other words, practice what we call
“outside-in design.” Think about the user’s needs
and their context, design what the user will see
and interact with, and then go about deciding how
to solve all the problems that creates for you.

PURPOSE OF THIS CHAPTER

Two of the core decisions you will need to make during the design process is whether to
make the product cross-platform and whether it should be native.

The purpose of this chapter is to empower you, as a user experience designer, to
understand your medium so that you can answer these questions informedly, starting
by looking at what exactly we mean by an application being “native.”

1 To learn more about working this way, read up on agile methodologies and user-centered product develop-
ment. The merging of these two worlds—that is, adding sufficient design and user testing to every iteration in
an agile process—is what I called user-centered agile product development back in 2003: smashed.by/cfe

Outside In Is Good,

Inside Out Is Bad.

Is your first question in a new pro-
ject which server-side technology
you will use or what your database
schema will look like? Stop! This is
a wrong approach. You’re trying to
solve your own problems, not the
user’s. That’s inside-out design, and
that’s a Very Bad Thing.™

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

258

What is “Native”?
Have you noticed how people throw around the term “native” willy-nilly without
grasping what it really means? Let’s change that, starting with what native is not.

NATIVE IS (AND IS NOT) ONES AND ZEROS

If we are going to be pedantic, “native”—insofar as digital devices are concerned—re-
fers to the absence or presence of electric current in the transistors that power our
computing devices. We usually visualize this as the basic cliché of digital computing:
binary code, a series of ones and zeros. We call these binary instructions machine
language.

While it is true that computers were once programmed in binary using switches, we
no longer write applications at a level that is so close to the metal. However, every other
computer programming language we have devised—assembly language, C, Python, Java-
Script, etc.—is eventually translated into the ones and zeros of machine language. These
are further translated into the presence or absence of electric current in transistors.

Figure 9.1. Yes, a huge number of devices are out there. No, your application does
not have to support all of them. Focusing on the user means identifying your target
audience and optimizing your applications for the platforms and devices they use.
Supporting a large number of platforms via progressive enhancement is easier if
you are primarily building content-based websites as opposed to behavior-based
applications. (Image: David Jones, smashed.by/davidjones)

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

259

Each of these technologies is built upon layers of abstraction. Python is written in C, for
example. The purpose of each level of abstraction—each higher layer in the layer cake
of technologies that comprise the modern computing ecosystem—is to make it easier
for developers to author applications. So, although technically correct, using “native”
to mean programming in binary is a rather meaningless definition in today’s world.

So, now that we know what native is not, let’s figure out what it is.

Native as Culture
“Native” refers to the technologies—i.e. languages and frameworks—that form the
culture, language, conventions and norms of a platform. It is the base level of abstrac-
tion that comprises the core symbols, gestures and interactions that users employ
to communicate with applications on a given platform. These elements are of utmost
importance because they constitute the culture and norms of a platform.2 They are the

2 These norms are usually expressed in interface guidelines for the platforms, such as the human interface
guidelines that exist for the Mac, iPhone, iPad and Android platforms. (Android is the odd one out here since
it is not really a single platform but has many flavors, each customized by device manufactures and mobile
carriers. This is why it is very difficult for Google to exercise control over the user experience of the Android
platform. Good user experience is a function of control—and Google has very little control over the user
experience of phones based on the Android platform.	

Figure 9.2. Web technologies can be the native technologies for certain operat-
ing systems. Here we have a Samsung laptop running Chrome OS, on which
HTML, CSS and JavaScript—and Web applications—are first-class citizens. (Image:
Google’s promotional image.)

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

260

language—both visual and behavioral—that users learn to communicate in when us-
ing a platform. Conversely, they are also the words, phrases and concepts that applica-
tions on a given platform use to communicate with users. The more usable and consist-
ent these are on a given platform, the more advantages there are to creating native
applications for that platform.

At one end of the spectrum we have Apple’s iOS, with its detailed “Human Interface
Guidelines”3 and its elegant and consistent Cocoa Touch framework. A native produc-
tivity app on that platform that conforms to the guidelines will inherit much of the us-
ability inherent in the core frameworks and will seem instantly familiar to users who
are already familiar with other applications on the platform.

At the other end of the scale, we have native platforms like Android that are heavily cus-
tomized by manufacturers, carriers and users to the point that there is little, if any, con-
sistency between different Android phones and applications. Designers of native applica-
tions on such platforms might have a harder time providing a consistent user experience.

3 smashed.by/apple

Figure 9.3. Apple’s “Human Interface Guidelines” provide clear instructions on
how native apps on the iOS platform should look and behave. They help define the
culture of the platform.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

261

For example, my iPhone app, Feathers,4 has a custom keyboard that I made for users to
enter extended Unicode symbols. On iPhone, it works exactly like the built-in iPhone
software keyboard. Achieving this took some effort, but it was not impossible. If I were
to port the application to Android, I would have to know which of the many software
keyboards the user has installed and then custom-
ize its behavior to match. Needless to say, this would
involve a lot more effort and might not even be feasi-
ble. The Swype keyboard5 that comes on some Android
phones, for example, is patented. So, on an Android
device with a Swype keyboard, I cannot make my
keyboard behave exactly the same way as the system
keyboard.

The compromise would be to make a single custom
keyboard and use that regardless of the user’s system
keyboard. Of course, it would neither look nor feel
like the main keyboard and thus wouldn’t provide the
same seamless experience of Feathers on iOS. Instead,
users of the app would have to learn to use two differ-
ent types of keyboards in the app and have to exert
cognitive effort when switching from one to the other.

4 smashed.by/fapp
5 swype.com

Figure 9.4. The Swype keyboard is actually quite amazing. Simply slide your finger from letter to
letter, and it automatically guesses the word you’re thinking of. Unfortunately, it is not on every
Android device, just some. Others come with keyboards that are more similar to the one on
iPhone, and users can buy and use a multitude of other third-party keyboards. While this array
of choice might seem good initially, it means that there is no single unified Android user experi-
ence. There are, in effect, as many Android user experiences as there are different versions
of Android as customized by manufacturers, carriers and users themselves. This makes it very
difficult to use a common design language when building apps.

Figure 9.5. Porting Feathers to
Android would require making
different versions of the cus-
tom keyboard to support many
different keyboard types.

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

262

Similarly, on native platforms that do not have a strong, consistent visual language and
culture—such as Android—or on native platforms that are notorious for being confus-
ing to use—such as Windows—non-native applications will have less of a handicap.
They might even provide better usability and user experiences in some situations.

A great example of a non-native application providing a better user experience on
certain native platforms is Gmail. Using a desktop mail client on an operating system
(OS) such as Windows could require you to find and install the application itself, keep
it updated, keep your mail synced between your various devices, and make sure mes-
sages are checked for viruses and other malware. Compare that to the simplicity of
Gmail, in which you enter a URL in the Web browser of any device and—boom!—you

have your mail. End of story. Beautiful. Gmail is also a great example of how creating
good cross-platform user experiences can require a lot of platform-specific optimizations.
Although the Gmail app runs across desktop and mobile platforms, there are actually
several highly optimized versions of the app.

The Web as a platform itself, however, has few user experience consistencies of its
own. Although Web applications share common features, there is no “Human Interface
Guidelines” document for the Web (maybe there should be).6 Instead, we focus on docu-
menting good coding and design practices, such as progressive enhancement. Different
browsers (that is, native applications that run Web apps) implement the bahavior of
core form controls differently. And that’s why a Web application could behave differ-
ently in different browsers even if it has the same markup, components and code.

6 See Tantek Çelik’s call for “Web Human Interface Guidelines” (smashed.by/wehuin) and read Joe Hewitt’s
post calling for more focus and vision for Web technologies (smashed.by/owned).

Figure 9.6. The Gmail Web app provides a consistent experience across platforms. Us-
ers don’t have to install anything or worry about syncing their email to multiple devices.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

263

Hybrid Applications
So, we’ve got native applications, which re-
fer to the culture of the platform that they
run on, and we’ve got Web applications,
which run in a browser on the Web. But
we’ve missed a third category that many
modern applications fall into: hybrid apps.

We need to understand the strengths of
various technologies and use them where
appropriate. Declarative Web authoring
technologies (primarily HTML and CSS)
are great for creating complex documents
and styling them beautifully. Thus, many
designers of native applications use HTML
and CSS when they need to display rich con-
tent. These types of applications are called
hybrid applications because they employ a
mix of native and Web technologies.

Figure 9.7. A browser is an application that runs in the context of the OS. In other words, a
browser is a native application. A Web app, on the other hand, is an application that runs in the
context of the browser. It is not a native application since it has one degree of separation (the
browser) between it and the OS. Similarly, a Flash app runs in the context of a Web app. It is not
a native Web application since it has one degree of separation (the Web app) between it and
the browser. Flash apps, therefore, are not native to the browser, just as Web apps are not na-
tive to the OS. (Image: Rosmarie Voegtli, smashed.by/voegtli)

Figure 9.8. The Facebook app on iPhone is
a hybrid app.

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

264

The Facebook app on iPhone is one example of a hybrid app, in which certain sections
(such as the news feed) are rendered using Web technologies.

Similarly, as we saw before, Web applications can also be hybrid. A website authored
in HTML, CSS and JavaScript and that uses Flash to display rich interactive content is
an example of a hybrid Web application.

Many applications today are hybrids, and if you are accomplished in HTML, CSS
and JavaScript, it is safe to say you will never go hungry regardless of which platform
or platforms end up becoming the most popular in the decades ahead.

Overcoming Ideological Bias
All too often, technology and design decisions are made based not on a desire to choose
the best materials and tools for the job but on ideology. The Web standards advocate
who blindly recommends the Web platform and Web authoring technologies for any
project, regardless of the users’ needs is, unfortunately, all too common. Developers
who blindly recommend Flash and native iPhone or iPad apps for any project are all too
common, too. The old adage “When all you have is a hammer, everything looks like a nail”
comes to mind. So, it is important to recognize such biases and to base your decisions
on the needs of your users, not on ideology. It is also important to be able to recognize
ideological views so that you can steer the discussion back into the realm of design.

Some advocates of Web standards hold a core assumption that the Web platform
and Web authoring technologies are, by nature, a force for good. One wouldn’t dispute
that the Internet and, by extension, the Web have had as radical a democratizing effect
on the world as the Gutenberg Press (if not more so). However, the Web platform and
authoring technologies are inherently neither good nor bad, and they could easily be
used for either end.

In the case of the Web platform, the common assumption is that it is inherently
good because any document or application placed on it is universally accessible. While
this may be true for open collections of documents—as was the norm for content in the
early days of the Web—it is generally not true for what we would consider a modern
Web application today. Take Facebook. Facebook is a Web application. It is not open. It
is free, but what this means is that you, the user, are not Facebook’s customer. You are
Facebook’s product.7

Your personal information and behavioral traits are what Facebook sells to its real

7 As Andrew Lewis states, “If you are not paying for it, you’re not the customer; you’re the product being sold.”
smashed.by/discont

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

265

customers, advertisers. Is this in any way inherently better or more open than having
to buy a commercial application from Apple’s App Store?

Not really.
In fact, you could easily argue that buying a license for a commercial iPhone app is

a more honest and up-front transaction. You pay for it and thereby own a license to use
it. You become the customer of the company or individual who made the application.
There is transparency in how the company makes its money. In many ways, this is a
much more traditional commercial relationship.

Of course, even commercial apps can use your data in devious ways, so being
vigilant about your personal information these days is important. But the point is that
simply being a Web application does not somehow magically make it a force for good in
the world.

Are Native Applications and Platforms Endan-
gered Species?
As Jeremy Keith famously put it at the Update Conference, “Writing a native app is like
coding for LaserDisc.” The implication here is that native platforms, like CD-ROMs and
LaserDiscs, will be obsolete soon since the Web is “catching up.”

I sure hope that is not the case, because the Web itself is a native platform and is
becoming even more so (in the traditional sense) with the rise of OS’s such as WebOS
and Chromium, which are based on native Web authoring technologies. We have to
understand that what the Web is supposedly catching up to is a moving target. New
features, user experience enhancements and more are being added to native platforms
all the time. It’s not like Apple will decide on 1 September 2012 that iOS is “done” and
stop creating new versions of the OS or new models of iPhone and iPad, at which point
the Web can take a few years to finish catching up.

We know that “native” refers to the core culture and language of a platform, so pre-
dicting the demise of “native” is analogous to saying that different devices will not have
distinct cultures in the future.

The assumption inherent in this view is that a monoculture will arise in the future
in which every application on every device will speak via the components of the Web
and be authored using native Web authoring technologies, and moreover that these
applications will all be served from the Web platform. If anything, this is a gray and
chilling vision of the future, in which people will have even less control of their own

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

266

data and in which their devices will simply become dumb terminals that hook up to
great silos in the sky (“the cloud”) that are controlled by large corporations.

Instead of owning a license to a word-processing application, for example, you
would write everything in Google Docs. Google, for its part, will be analyzing every
word and sentence, trying to understand more about who you are and what makes you
tick so that it can use that information to better manipulate your commercial behavior.

This is not to say that Web applications are necessarily evil, but they are definitely
not inherently good.

Blurring of the Lines
We keep hearing that “the Web is catching up to native.” What people mean when they
say this is that Web authoring technologies are getting better access to device features
such as touch, hardware-accelerated graphics, GPS, accelerometer support and cam-
eras. What is rarely mentioned, however, is how native applications are catching up to
Web applications. In some respects, the strides that native applications are making are
far more important because they threaten the core user experience advantages that
Web applications have historically enjoyed over native applications.

The three main areas in which native applications are catching up to Web applica-
tions are ease of deployment and access, automatic updates and seamless access to data.

EASE OF DEPLOYMENT AND ACCESS

One of the core user experience advantages that Web applications have historically
had over native applications is the ease with which they can be deployed and accessed.
Click the “Upload” button in your FTP application of choice8 and your app becomes ac-
cessible to anyone who has the URL anywhere in the world.9 Simples.

No need to download a Zip file, then search for an application to unzip it with, then
look for where you downloaded it to, then unzip it, then install it, then run it, only to
find out that it doesn’t support your graphics card. Eek! Is it any surprise that Web ap-
plications like Gmail and Google Docs have enjoyed such phenomenal success, espe-
cially on native platforms with poor usability?

However, native apps are catching up to the ease of deployment and access offered by

8 Or, if you’re really savvy and use a Git repository, you could use a post-commit hook to automatically deploy
your latest commit to the server.
9 At least where the URL isn’t blocked by an autocratic regime.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

267

Web applications thanks to the development of app stores. With an app store like Ap-
ple’s, the process of finding an application is as easy as hitting a URL in a browser. In
fact, you can hit a URL to reach an app in the App Store and, from there, simply click a
button to download and install it.

AUTOMATIC UPDATES

Web applications, by nature, have always provided automatic updates. In fact, we don’t
even think about the “version” of a Web application because the Web is inherently ver-
sion free.

You’re always using the latest version of Gmail, and you don’t care what version it is.
It’s not Gmail 7; it’s just Gmail.10

Native applications, by contrast, have usually had clunky update mechanisms that
interrupt the user’s flow. That, too, is changing with more and more native applications
implementing seamless updates. When, for example, was the last time you noticed
Google Chrome updating? Never. It does it silently.

10 Read up on the “one version manifesto” and the versionless character of the Web in my opinion piece in
.Net magazine titled “My Websites Will Only Support the Latest Browser Versions”: smashed.by/netsup

Figure 9.9. The line between the user flows of Web applications and
native OS applications is blurring. In fact, in OS’s based on Web tech-
nologies, Web applications are native OS applications.

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

268

SEAMLESS ACCESS TO DATA

The other huge advantage that users of Web applications have traditionally enjoyed is the
ability to access their data from any device. You never have to worry about syncing email
from your desktop to your mobile phone when using Gmail. It’s always there. Compare this
to the nightmare that has traditionally plagued syncing on native platforms.

Native apps, however, are again catching up. With Apple’s iCloud, for instance,
manual synchronization is becoming a thing of the past. Your data is simply, transpar-
ently and automatically available on your Apple devices and is kept constantly in sync
without your having to worry about it. Although iCloud is primarily an Apple-centric
continuous client solution, other cross-platform technologies, such as Dropbox, bring
similar advantages to other platforms.

Just Another Client
Did you read the previous section thoroughly? Good. Then you may have noticed the
common thread in all three areas where native applications are catching up to Web
applications. They are all areas where the advantage in user experience is due to a
characteristic of the Internet and not the Web. The Web is just a stack of technolo-
gies—namely, HTTP and URLs—on top of the Internet stack. So, native applications
are catching up to the Web by taking advantage of the very same characteristics of the
Internet that the Web does.

Furthermore, we are seeing the rise of a new type of user experience pattern, called
the continuous client. A continuous client experience—as originally proposed by Joshua
Topolsky11—lets a user seamlessly continue an experience across devices and contexts.

For example, if you are reading your Twitter stream on your computer and then
grab your phone, you should be able to continue reading the stream from the same
place. And when you get home, you should be able to continue from the same place
again on your TV.

A good example of a continuous client in the wild is the Trillian instant-messaging
application. It can store chats in the cloud, share chats between all of your devices in
real time, keep track of and synchronize your read and unread messages, and even
make use of “presence technology” to know on which device you’re currently active so
that it can send current notifications only to that device.

11 Topolsky, Joshua. “A modest proposal: the Continuous Client,” smashed.by/client.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

269

If you think about it, in the age of continuous client experiences, the Web becomes JAC
(just another client). It may be the best client to use in certain contexts, but users have
the choice of switching to native clients without worrying about synchronizing data.
Soon, continuous clients will be a core expectation instead of a novelty, especially as
high-level technologies, e.g. iCloud, make it easier for developers to implement them.

Figure 9.10. Kelly Sommers has a nice sample app that showcases a continuous
client experience: smashed.by/multi. Users can start watching a video on their
Windows Phone 7, continue in a Web client, and then on their iPhones.

Figure 9.11. The instant messaging app Trillian is a good example of a continuous
client. (Image: Trillian Blog, smashed.by/trillian.)

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

270

The Future is Native
The Web today is just another native platform and one that, going forward, has to
compete on its own unique merits and not on the advantages bestowed upon it by the
Internet, because other native platforms are also implementing those same advantages.

The tricky question to answer when deciding whether to use the Web platform or
other platforms for your next application is whether the advantage lies in exposing the
user interface of your application as a native app or in exposing it via a URL and serv-
ing it via HTTP.

As Web applications catch up to native platforms with features like Local Stor-
age and the ability to run while the device is offline, the line between Web and native
applications blurs even further. This is taken to its logical extreme in OS’s like Palm’s
WebOS and Google Chrome, where the native technologies are Web technologies.

We need to understand that a Web application running on such an OS is a native
application. At that point, our decision is between different native OS’s and native
frameworks. That choice will be greatly influenced by which native OS’s offer a supe-
rior user experience. Subsequently, our technology choices will be between different
native authoring technologies—HTML, CSS and JavaScript for native Web applications,
Objective-C and Cocoa Touch for native iOS apps, Java and Android SDK for Android
apps, C# and .NET for Windows Phone apps, and so on and so forth.

Regardless of which platforms and technologies win out in the end, the future is
clearly native and the Web is JAC. Now, the billion-dollar question is not “Do we go Web
or native?” but rather “Which platform or platforms and which client technology or
technologies should our new product support?”

To answer this, we need to understand the nature of our product and, specifically,
where it falls on the documents-to-applications continuum.

The Documents-to-Applications Continuum
On the Web, one way to classify products is according to whether they are content-
centric or behavior-centric. We call a content-centric collection of documents a website.
A behavior-centric product is called an application (or “app”). Instead of falling entirely
in one camp or the other, your product will probably lie somewhere between the two
extremes on the documents-to-applications continuum.

When a product falls closer to the documents side of the continuum, we can use
progressive enhancement to layer features and interactions on top of the content-based
core while keeping that core accessible to the largest number of people possible. These

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

271

progressively enhanced features usually either layer advanced formatting or layout on
these documents or add fanciful interactions for navigating within or between them.
We can make the content adapt to different screen sizes and make the limited interac-
tions that are used to navigate the content adapt to different input mechanisms. This
isn’t an easy task, but nor is it impossible.

As products shift from the documents side of the spectrum to the applications side,
however, implementing progressive enhancement gets harder. In fact, it might become
entirely meaningless or impossible. How would you gracefully degrade an online im-

Figure 9.12. The documents-to-applications continuum.

Figure 9.13. The principle of universality, as composed by the creator of the World Wide Web,
Tim Berners-Lee, was written in an age when the Web was mostly a collection of interlinked
documents. It doesn’t necessarily apply wholesale to applications, which have very different
design constraints and requirements. See Lea Verou’s comment on John Allsopp’s retort to my
one-version manifesto on .Net magazine: smashed.by/netmag

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

272

age editor, for example? How would an image editor work on feature handsets without
graphical displays? What content would you actually fall back to displaying?

Applications are not content-based; they are behavior-based. Gracefully degrad-
ing to a simpler representation of whatever content an application might have does not
always make sense. Applications are often made up entirely of behaviors that let users
create content. Consider the image editor again: it doesn’t have any content itself, but it
enables users to create content.

In order to create exemplary user experiences, we need to maintain focus. This focus
has to be placed squarely on meeting the needs of our users in the best way possible.

Given unlimited time and resources, we could
optimize the user experience of our apps on every
device and platform known to humankind. How-
ever, given limited time and budget we have to
work with in the real world, we must be selective
with our audience, problem domain, platforms
and devices. We do this not to exclude people un-
necessarily but because we realize that including
everyone and giving everyone a great user experi-
ence is impractical.

Mobile Design Considerations for Document-
Centric Products (Websites)
On the documents side of the continuum are websites. A website comprises content as
well as the presentation of that content. The content may be text, images, audio, video, etc.,
that is marked up with HTML in order to add semantics and structure. The presentation
includes both the visual layout and the interactive elements (such as navigation between
pages or states) and is usually implemented using a combination of CSS and JavaScript.

If you have a website, the first thing you should do is test it out in mobile contexts
to see how it displays and performs. I’ve encountered far too many companies that
overlook the importance of making their websites mobile-friendly and jump straight
into creating a native application. Be careful of making this mistake, especially if your
website is an important revenue generator. For document-centric websites, use pro-
gressive enhancement whenever possible to make sure the content and core interac-
tions for navigating and consuming that content remain accessible to as wide a base of
your users as possible.

No product team on

Earth has the resources

to create applications

that provide the best

possible user experi-

ence for every user.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

273

To do so, you can follow these broad steps:

1.	 Make sure your content is accessible to eve-
ryone, and mark it up with proper semantics.
Separating content from presentation is key.

2.	 Progressively enhance your content to pro-
vide a more optimized experience for people
viewing it at different screen sizes (this is the
focus of responsive design currently).

3.	 Progressively enhance your content to pro-
vide a more optimized experience for fami-
lies of devices based on supported features
and capabilities (for example, touch). In
other words, make the website responsive in
behavior, not just in layout. At this point, you
are optimizing for features, not for specific
devices (say, for all mobile phones that sup-
port touch, not just the iPhone).

4.	 Progressively enhance your content to sup-
port the unique culture and capabilities of
the various devices you want to support. At
this point, optimizing for specific devices is
all right. There’s nothing wrong with trying
to make the user experience as beautiful as
possible, even if it is for a specific subset of
your users at a time.

Of course, each of these steps will take time and more resources, and you will need to
plan and budget accordingly. But what if making your current website responsive does
not meet your users’ needs in this particular instance? Perhaps you need to provide a
more optimized and focused experience than progressive enhancement allows given
your budget and schedule, or perhaps you need a level of device integration that is
simply not possible through a browser currently? In this case, you might want to start
thinking about whether to build an app, and if so, whether it will support multiple
platforms and which technologies you should use to build it.

Make sure to test your

designs on actual devices

A simulator or emulator is great for
testing the effects of code changes
while you’re developing, but they
cannot recreate the unique ergonom-
ics of the device itself. Context is also
a key factor that affects the usability
of mobile experiences, and a design
that works perfectly well under the
perfect lighting conditions of an office
might not work as well in bright sun-
light, for example.
	 Also, remember that when you
test with a simulator, it uses your
computer’s powerful hardware to run
the application. You might see slower
performance—and even slightly dif-
ferent behavior—when running on
an actual device.

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

274

Cross-Platform or Single Platform?
Can you best meet your users’ needs with an application that runs on multiple plat-
forms or—at least initially—on a single platform?

When answering this question, keep in mind that creating an application for a
single platform does not mean that you cannot create a separate app for a different
platform later on. It just means that you will be focusing your design and development
efforts on a single platform (or perhaps even a single device) to start with.

It also does not, by itself, imply whether you will be creating an application that runs
as a native binary or whether your application will use the native components of the
device or devices that it runs on. (Using cross-platform authoring technologies to create
an application that you have optimized for a single platform is perfectly possible.)

The answer to this question will, however, determine how much optimization
you must do on different platforms. If you care about the user experience, you must
optimize your app on each and every platform that you support. It will also affect how
much testing you must do (because you will need to test on every platform that you
support), the size of your support department (because you will need to troubleshoot
user issues on every platform that you support), and how much time and budget you
need to set aside for these various functions.

THE MYTH OF WRITE ONCE, RUN ANYWHERE

A common mistake I see many designers make is to assume that by using cross-plat-
form authoring technologies they will be able to write once, run anywhere. This is a
myth. And acting on the myth can lead to rather costly underestimations.

The only way to get an application to run well on
multiple platforms is to optimize it for each one of
those platforms and devices. As mentioned earlier,
every platform has its own culture, language and
norms that users expect apps to conform to. And
most users do not care how many other devices
your application runs on—they care only about
how well your application runs on their device.

Designers who do not take the unique cultures, customs, language and norms of
their respective platforms into consideration risk making their applications look and
sound out of place. The applications will appear noticeably foreign, unnecessarily loud
and usually rather arrogant, simply because they are culturally insensitive.

Your application might

run on multiple platforms,

but this rarely—if ever—

means that it will run well

on multiple platforms.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

275

Because we don’t want our applications to exhibit such obnoxious behavior, we must
optimize them for every platform we support. Our aim is to create applications that are
culturally sensitive to the language, norms and customs of the platforms they run on.
Anything less and we would be showing varying degrees of disrespect to certain seg-
ments of our users.

DEATH BY A THOUSAND CUTS

The worst thing you could do, of course, is disrespect all of your users by creating a
lowest-common-denominator application that gives every user on every platform an
unoptimized user experience. At that point, you would be at your most vulnerable.
Even though your cross-platform application might have the potential to reach a large
number of users because it runs on a large number of devices and platforms, it will be
at a disadvantage in user experience on every one of those platforms. To put it bluntly,
who cares if it runs on a certain platform if it runs badly?

More importantly, what happens when a competitor comes by on one of those plat-
forms with a beautifully designed, precisely optimized, delightful user experience and
blows your app out of the water?

And then again on a different platform by a different competitor?
This is death by a thousand cuts, whereby your application is abandoned one plat-

form at a time for superior alternatives. Supporting multiple platforms is not a feature
unless you can support them all well. You may have first-to-market advantage, but that
will last only until you are outdone by your best-in-market competitor.

WRITE ONCE, OPTIMIZE EVERYWHERE

So, write once, run anywhere is a dangerous myth. Cross-platform applications that
compete successfully are write once, optimize everywhere. You must understand the
implications this will have on your budget and schedule and plan for optimizing, test-
ing and supporting your application on every platform you choose to support.

Please do not be taken in by the “create a cross-platform application in five minutes”
demos by various tool vendors. They are rubbish, unless you are building the simplest of
to-do list apps. The true test of a development technology is not how easily it enables you
to create a five-minute demo or how quickly it gets you 70% of the way to your goal, but
rather how easily it enables you to tackle the last 30% of your development, including the
all-important user experience optimizations that could take up the last 10%. These details
could end up taking up the bulk of your time and effort in developing the application.

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

276

WEB AND OTHER CROSS-PLATFORM TECHNOLOGIES

Broadly speaking, cross-platform technologies can be split into two groups: those that
create native binaries and those that don’t. We can also further categorize them as
those that use native frameworks and those that don’t. The combination gives us the
binary-framework matrix shown below:

A native binary is an application bundle that can be run directly by the OS of a given
device. It is what we think of commonly when we refer to a “native app.”

However, the far more important test of nativeness is whether the application
makes use of native frameworks. These frameworks are what embody the culture,
language, gestures, symbols and norms of a platform.

Native binary

Native frameworks Foreign frameworks

Foreign binary

wxPython Web applications
Flash app running in Flash Player

PhoneGap
Flash app compiled to native binary

Unity
Corona

Appcelerator Titanium
MonoTouch

Figure 9.14. The binary-framework matrix.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

277

Foreign Apps Wrapped in Native Binaries 			
(or Wolves in Sheep’s Clothing)
Creating a native binary for iPhone that does not use any of the native components in
the Cocoa Touch framework for iOS is possible (and quite easy) by using a technology
such as Adobe’s PhoneGap. PhoneGap wraps an existing Web application—that uses
native Web components—and creates a native operating system application from it (in
the example above, a native iOS application). While your app might look like a native
app on the iPhone’s home screen and might launch like a native app, the UI of the app
will be rendered using Web components.12

Your binary application is just a shell that contains a WebKit component. This Web-
Kit component is what renders your Web application using Web components. Because
Web components cannot meet native expectations, I would not recommend using
PhoneGap to create non-immersive applications such as productivity apps.13

When building immersive applications such as eBooks and games, however, the
lack of native framework support in similar technologies is not as big a problem. Adobe
Flash and ActionScript, Unity and Ansca’s Corona are favorites among native game and
eBook app makers, even though they do not use native frameworks or components.
This is because immersive apps rarely, if ever, use native components. Instead, their
designers aim to create a completely different world—perhaps a skeuomorphic one that
looks and behaves like a real-world book—with its own rules, interactions and culture.

I do not recommend Adobe Flex (or applications that use components from the Flash
framework) for the same reason that I do not recommend using PhoneGap to create
non-immersive native applications: they do not conform to the culture of the native
platform and will behave differently than native components on the system.

In summary, be careful when creating native binaries that simply wrap applica-
tions that do not use native components. These apps have a tendency to look like native
applications, but they cannot behave like native applications because they do not use

12 PhoneGap does not dictate the use of any particular Web UI framework (for example, jQuery Mobile). All it
does is let you wrap a Web application in a native application. However, regardless of which UI framework
you use (or even if you decide not to use a Web UI framework at all), the rendered components will be Web
UI components, not the native UI components of the platform that your app runs on.
13 The same can be said for Web applications that are added to the home screens of phones. Again, the Web
application in question looks like a native app, launches like a native app, but does not behave like a native
app. A Web application running in the browser does not have these shortcomings because it does not create
the expectations of a native OS app in the first place. A Web application running in the browser is a native
Web application, and native Web applications—just like native apps on other platforms—have their own cul-
ture, conventions, language, norms and expectations (even though these might not be as strongly defined as
on some other native platforms).

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

278

native components in native frameworks. A PhoneGap application that uses the jQTouch
framework might display what looks like an iOS table view when running on an
iPhone, but this is simply an HTML look alike brought to life by clever use of CSS and
JavaScript. It pretends to be an iOS table view, but it cannot meet the behavioral char-
acteristics of a real table view component from the Cocoa Touch framework, and thus it
ends up creating expectations that it cannot meet.14

Creating unmet expectations is a major faux pas of usability. Avoid it like the plague.

Immersive vs. Non-Immersive Applications
Understanding the distinction between immersive and non-immersive applications is
important because the nativeness of an application is considerably less of an issue for
immersive applications.

Immersive applications usually take over the whole device and, by definition, create
their own culture and language. A good example is games. A game could have its own
control system for running, jumping and firing. Far from conforming to the culture of
the platform, a good game transports the user to a world of its own creation. As such,
immersive applications usually employ few, if any, of the platform’s conventions. As
such, they are prime candidates for the use of non-native technologies.

This explains why Flash, while not native to the Web, is such a popular technol-
ogy for delivering immersive experiences such as games on the Web; or why Unity,
while not using the native components in Cocoa Touch, is used to make many of the top
games on iOS and other platforms.

Non-immersive applications (such as productivity apps) usually make heavy use
of standard user-interface elements like buttons and table views. They use platform-
specific interactions like full-screen “master-detail” transitions on iOS, whereas they
might use a tree-view control on a Windows or OS X application. It is thus very impor-
tant that non-immersive applications speak the native language and conform to the
native culture and norms of the platforms they run on.

All that being said, even for immersive applications, performance could still be an
issue that influences your choice of whether to use native or non-native technologies.

14 The biggest usability faux pas you can commit is to style or skin non-native components to look like native
components (as the jQTouch framework does). Whereas components in a native app that do not look like
native components at least offer a visual clue that they will probably not behave like native components,
non-native components that pretend to be native components will confuse users even more by appearing
a certain way but behaving differently. The best thing to do, of course, is to use native components in your
native apps. Failing that, at least make your components different enough visually so that you do not create
behavioral expectations that you cannot meet.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

279

Certain games—such as first-person shooters—need to squeeze every bit of perfor-
mance out of a system in order to shine. In these situations, some non-native technolo-
gies might not be performant enough for your needs. The early versions of Adobe AIR-
based Flash apps on iPhone, for example, were notoriously slow. Adobe has improved
performance in the latest versions of Adobe AIR on iOS, though.

Native Apps Translated From Non-Native Languages
If your goal is to provide an optimized user experience, a better cross-platform ap-
proach when creating non-immersive native applications would be to use native
frameworks and components. This does not necessarily mean that you have to use the
native programming language for a given platform to author your application.

Using Appcelerator’s Titanium Mobile SDK, for example, you could write JavaScript
to instantiate and populate native components.15 Thus, on iOS, when you create a table
view in Titanium Mobile, a native Cocoa Touch table view component (a UI TableView
instance) is created in your user interface. This not only looks like a native table view
(as could also be the case in a PhoneGap application that mimics the native components)
but actually is a native table view. Most importantly, it behaves as a table view should.

The use of a scripting language like JavaScript can make it easier to author applica-
tions and reuse your team’s existing Web development skills, while still affording you
all of the advantages of using native components in your native applications.

Also, because Titanium Mobile is a cross-platform technology, it knows to instanti-
ate native iOS components for your native iOS app and use native Android components
instead when compiling your native Android app. The advantages are clear: you use a
single scripting language (JavaScript) and have to maintain just one code base, instead
of having to learn and use Objective-C on iOS and Java on Android and maintain two
separate code bases.

The disadvantage is that you have yet another layer of abstraction to work with.
Ultimately, the quality of your applications will depend on the quality of the code that
Appcelerator writes in its abstraction frameworks. And you will be dependent on how
quickly Appcelerator supports new features that are released to the native frameworks
and SDKs. Although Appcelerator tries to make the differences between platforms as
transparent as possible in Titanium, there are differences—not least of all cultural

15 Don’t confuse Titanium Mobile with Titanium Desktop. The latter works just like PhoneGap. Appcelerator
has recently open-sourced Titanium Desktop (now called Desktop) and is focusing its efforts on improving
Titanium Mobile: smashed.by/tita.

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

280

Native is not necessarily better, but it is native.

The only way to create applications that conform to the norms—that is, the culture and lan-
guage—of a given platform is to use native technologies. E.g., while creating Flash applications
that are served on the Web platform is possible, they will not look or feel like native Web appli-
cations that use native Web authoring technologies like HTML, CSS and JavaScript. Similarly,
while using these technologies to create applications for platforms like the iPhone is possible,
the applications will not look or feel like native iPhone applications that are created using the
components in the Cocoa Touch framework. That is not to say that Flash applications cannot
perform better than HTML applications. In certain use cases—especially immersive apps like
games—Flash applications might provide a better user experience. Machinarium, for instance,
is a lovely game created in Flash that runs beautifully on iPad. Again, especially for immersive
applications like games and eBooks, a cross-platform technology like Unity or Corona could
reduce development time and make it easier to implement features that would be more difficult
to create using native technologies (such as a 3-D environment or a physics engine).

Figure 9.15. Comparison of some common native and cross-platform technologies.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

281

ones—that you will still need to address and optimize for (remember that our credo is
write once, optimize everywhere).

This is not to say that you should fear cross-platform technologies, but rather that
you should do your research, weigh the pros and cons and make an informed decision of
whether to add another layer of abstraction to your development process. Each cross-
platform technology has different advantages and disadvantages and use cases that
make it a better fit for certain types of applications. While Corona might be the perfect
choice for a 2-D physics-based game, Titanium Mobile might be better for building a
cross-platform productivity application.

Of course, Titanium is not the only cross-platform technology that can create native
binaries and use native frameworks. If your team has skills in C# and .NET develop-
ment, you might also want to consider Mono (and specifically MonoTouch for iOS and
Mono for Android). Mono works in much the same way as Titanium, but instead of us-
ing JavaScript, you use the C# programming language (… and, with caveats, other .NET
programming languages) and .NET patterns and tools to create native apps.

Web Applications
If you are reading this book, you are probably either a Web designer or a Web developer
(or both), or you are learning to become one. Your role as a Web designer might involve
anything from designing collections of documents (in which case you would rely heav-

Figure 9.16. Machinarium on iPad, an immersive native app created in Flash.

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

282

ily on your graphic design skills) to designing behavior-rich applications (in which
case you would be exercising your interaction design skills).

You also have a rich selection of materials to choose from when designing your
products. Depending on the needs of your audience, you might choose to use na-
tive Web authoring technologies such as HTML, CSS and JavaScript to create native
Web applications; alternatively, you might use non-native cross-platform application
authoring technologies such as Adobe Flash or Unity to create non-native Web applica-
tions. As a third option, you might use a combination of both native and non-native
authoring technologies to create hybrid Web applications—for example, a website built
primarily with HTML, CSS and JavaScript but complemented with Flash to deliver a
rich gaming experience.

Regardless of your choice of native or non-native Web technologies, what makes
a Web application a Web application is that it is deployed to, and accessed from, the
World Wide Web platform. This means, at its simplest, that your website or application
has a URL16 and is served via HTTP.

Single-Platform Native Applications
Having worked through the process above, you might decide that you would best serve the
needs of your users by tackling a single platform or device for your application and invest-
ing your limited time and budget into optimizing the user experience for that platform.

If you do decide to support a single platform, you still have technology choices to
make. If you’re making a game or other immersive application, you can choose a cross-
platform technology that is specifically geared to making it easy to author such appli-
cations, such as Ansca’s Corona, Unity or Adobe Flash.

If you are building a non-immersive application, you still have the option of using a
cross platform toolset like Titanium Mobile or Mono. The downside there is that your
development process will involve one additional translation layer, and you will have less
control over optimizing the performance of the application because you will be reliant
to some degree on the native code that Titanium’s engineers have written. Even if you
do use Titanium (or a similar framework like Mono), remember that you will still have
to learn the native frameworks (or APIs) of the platform that you are developing for.
Learning new frameworks is much harder than learning new programming languages.

16 More precisely known as a URI, although there are technical differences between the two that would make
a W3C standards geek froth at the mouth if they were to see as cursory a dismissal of those differences as is
being displayed here.

Mobile Considerations in User Experience Design: “Web or Native?” CHAPTER 09

283

Whereas a seasoned programmer could pick up a programming language like Objec-
tive-C in a matter of days, it could take weeks (if not months or years) for a developer
to fully grok and become comfortable with the patterns, culture and intricacies of a
framework like Cocoa Touch.

Finally, you could use the native toolset of your platform of choice. For example, you
can use Xcode with Objective-C and Cocoa Touch to build a native iOS application, or
Eclipse with the Android SDK to build a native Android application, or Visual Studio
with C# and the .NET framework to build a Windows Phone application.

This could involve learning a new programming language (Objective-C for iOS,
Java for Android and C# for Windows Phone) or hiring team members who know the
language and have experience with the native framework. As stated, picking up a new
language is easy, but learning a new framework is much harder. Keep that in mind
when deciding whether to go this route if you or your team do not already possess the
required skills.

The advantages of building native applications using native technologies are numer-
ous. For one thing, you have complete flexibility in optimizing the application and
user experience. When you use native components and adhere to the human interface
guidelines for your chosen platform, your application will conform to the culture,
language and norms of that platform. It will be easier for users to learn and use. Also,
since you are not reliant on a foreign abstraction or translation layer, you will always
be working with the latest code and frameworks from the manufacturer, giving you
additional flexibility to accommodate new features and updates as they are released for
the platform. Most importantly, concentrating your efforts on a single platform means
that you can put the time that you would otherwise have spent optimizing, testing and
supporting other platforms into refining and optimizing the user experience of your ap-
plication first, and if necessary add support to other platforms later on.

DESIGNING FOR HUMANS

The platforms and technologies that you decide to use for your next product will have a
fundamental impact on how the product is accessed, how it looks and feels, and wheth-
er it meets—and hopefully exceeds—the needs of your users. This is not a decision to be
taken lightly or brushed over.

If your choice of platforms and technologies is based simply on your perceived
short-term business needs or on the current competencies of your team, then you are
making a decision that solves your own problems, not the user’s problems. This may

CHAPTER 09 Mobile Considerations in User Experience Design: “Web or Native?”

284

have short-term advantages, but you will not be able to compete in the long term with
those who solve the user’s problems first. Your choice of technologies and platforms
should be based on how best you can meet the user’s needs, not on ideological bias or on
obtaining short-term gain at the risk of long-term loss.

Remember that there are already too many things out there. We don’t need more
things. We need things that work better. Make things that inform, empower and de-
light. And use the right tools and technologies for the job.

About the Author					
Aral Balkan is an experience designer and developer working to
improve the world through design that empowers, amuses, and de-
lights. These days, he’s organizing the Update Conference as part
of the Brighton Digital Festival and makes iPhone apps such as his
critically acclaimed Feathers.

About the Reviewer					
Josh Clark holds a B.A. from Harvard College in Cambridge, Mas-
sachusetts. Josh is a regular speaker at international technology
conferences, sharing his insight into mobile strategy and designing
for phones, tablets and other emerging devices. His motto is the
same for both fitness and software user experience: no pain, no
gain. Josh is the founder of Global Moxie.

About the Reviewer					
Anders M. Andersen holds a Masters in computer science from La
Trobe University in Melbourne. His life is driven by this line from
Douglas Adams: “I love deadlines. I like the whooshing sound they
make as they fly by.” Through his work, he strikes to make informa-
tion available to people. The biggest lesson he’s learned in his career
is that if you want something done, do it yourself. And his personal
message is, make sure to learn something new every day.	

Workflow Redesigned: 	
A Future-Friendly Approach

Written by Stephen Hay
Reviewed by Bryan Rieger

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

286

am often reminded of those wall maps that show the territory of an office
building, shopping mall, subway or city zone, along with a prominent, “You are
here,” usually with a red arrow and dot marking where I’m standing. These maps

show us where we are in context and enable us to get directions to where we want to
go. We need both, of course: we obviously need to know where we are going, but direc-
tions don’t make sense unless we know where we are now.

I

Figure 10.1. While having a goal is important, knowing your starting point is essential.
(Image credit: Joe Goldberg, smashed.by/joegph.)

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

287

The map makes this easy for us. “You are here” presents our current location as a given;
finding our destination is a matter of looking it up in an index and finding the coordi-
nates on the matrix. Assuming you know where you want to go in the first place, all
that is left to do is travel.

Philosopher Alfred Korzybski observed that a map is not the territory: a model of
reality is not reality itself. This is why most project plans do not work. I can’t help but
feel we all know this deep down. Experience hammers it home in any case: traffic jams,
road construction, one-way streets are all things we did not see and could not have
seen on our map, things we come across while travelling.

Travel is a form of workflow. We dart in and out of traffic, take shortcuts, avoid ob-
stacles, stop for coffee, encounter an old friend who tells us the store we’re looking for
has moved to another address. Grab that map again and revise the plan.

A workflow should be fluid. It should adapt to different circumstances. It should
be… responsive, if you will. We, pattern-seeking creatures and lovers of step-1-2-3 tuto-
rials, would love nothing more than a recipe for our workflow:

•	Go straight two blocks,

•	Turn left,

•	Go another two blocks,

•	First building on the left.

That would be fantastic in a world where the map is the territory. But it’s not. Ever.
First, we often do not know where we are at the beginning of a project. There is no

“You are here.” Clients often tell us “You are here,” but our job as designers is to ask
questions to discover whether that really is the case. Even “I think we are here” is a
gamble. If you want to get to New York and you are in Paris rather than Chicago, you’re
in some serious trouble: the car you rented is not the best mode of transportation. You
might still get to New York, but it will take much longer.

Thus, a workflow should remain fluid, because every factor influences other
factors. The combination of the starting point and the end point (the goal or target)
shapes our choices for getting from A to B. Plane to New York, cab to the hotel, walk to
the building.

In Web design, the territory changes quickly. Maps are only marginally useful. In
multi-platform design, where websites and apps will be used on various and many de-
vices, we are confronted with multiple destinations. The list of devices to be supported

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

288

might be our map, but its usefulness in this changing landscape is limited. We cannot
say, “It has to look good on Android,” because what does that even mean? You could
probably come up with a list of variables that you have to deal with: screen resolution,
pixel density, screen size, CSS support (or support for any technology, for that matter),
accessibility, keyboard and mouse input versus touch input, the list goes on. And these
are only technical factors; let’s not forget fuzzy (albeit still technical) variables, such as
why the website looks different on the client’s BlackBerry than it does in your Photo-
shop mockups. Oops!

So, how do we set up workflows for our website (re)designs in such a way that we re-
main flexible and adaptable, yet do not wander all over the place? A good first step is to
start at the beginning. Let’s look at what we have and see where we are and where we
want to begin our journey. To give ourselves optimum flexibility, let’s first focus only
on the content.

Structured Content First: 					
Platform- and Device-Agnostic Thinking

Purposely ignoring our destination, and focusing only on where we are and whether
it is indeed where we want to begin, affords us great flexibility. One of the biggest
problems on the Web today is that technology influences decisions more than it should.
Device capabilities become reasons for implementing functionality. Content manage-
ment systems are chosen before even deciding what the application will do or who it is
for. “We’d like to use HTML5,” we declare.

People’s focus on technology is natural. Technology is fascinating and great fun,
after all. Web technologies are toys, tools, stuff that “everyone” is using. We see cool
demos and think up reasons to use the technology behind them, instead of allowing
our problem to lead us to the right technology for the solution. We forget that these
demos are made by people who… well, make demos. If you are in a redesign project,
that is real life. You’ve got to make stuff that works. Cool is OK, but only if it works and
solves a problem. The focus today is far too often on solutions instead of problems. We
need to become temporary pessimists and focus on all of our problems—focus on them
intently, let them incubate. To those whose business is to keep up with Web technology
(um, that’s you), the answers will literally come to you in the shower.

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

289

CONTENT INVENTORY

There is a certain way of thinking about content that can help the designer (and their
client) focus on what really matters about the project. And what really matters, 100%
of the time, is the base content and functionality of the website or app. It’s all about
the reasons why people would use the product in the first place. Ignore the platform.
Ignore user agents. Focus on your reasons for being. Let’s call this platform- and device-
agnostic thinking, because we don’t care about those things just yet. Let’s apply this
thinking to the base content and functionality.

As usual, asking questions will help us think critically:

1.	 Why would people use this website in the first place? Come up with good rea-
sons.… I’m not convinced. Come up with more. Now refine those reasons. They
must be true.

2.	 If only one browser existed in the world, and it rendered only HTML, with 	
default styles and all functionality being handled on the server, what is the 	
sum of the content and functionality you would offer? In other words, what 	
should all users be able to see and do in all situations?

Put your answers to these two questions in a list. We’ll call it our content inventory. For
each piece of content or functionality that you add to the content inventory, it must
pass the purpose test: it must actively support the reasons you have listed in response to
the first question.

When you’re done (this will take a while and is a significant project milestone), look
at the result—closely. It says, “You are here.”

In this chapter, we will introduce some subtle (and not so subtle) changes to a
common Web design and development workflow, to make it more future-friendly.
We will get a sense of how to apply our new workflow to a simple project. The project will
be small and intentionally not comprehensive. It will merely illustrate how these ideas
can be put into practice, rather than serving as a case study. Try out some or all of the
techniques in your own projects; use what works for you, and alter or dispose of what
doesn’t. I have used all of the elements in this workflow in actual projects and have been
very pleased with the results. I hope you get as much out of these ideas as I have.

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

290

AN EXAMPLE: “THREE LITTLE BOXES”

Let’s say we are working on a website that will teach developers about the “CSS Flex-
ible Box Layout Module” (or Flexbox), a relatively new module for layout that has great
potential in the multi-platform space.1

The point is to keep the explanations and examples ridiculously simple. Because
most CSS properties can be explained by rendering text and a few boxes, let’s call our
website “Three Little Boxes.” Eventually, we might expand the lessons to include other
CSS modules.

“Three Little Boxes” will consist of theory and syntax, as well as several exercises,
each building on the concept of the preceding exercise. The user will be able to write
their code in an in-page editor, and the “Result” space will show the result of their
code. Clicking on the “Run” button will run the inputted code. Each exercise has two
types of textual content: theory and assignment. The theory explains syntax and con-
cepts, and the assignments are the exercises for the student to complete.

Let’s brainstorm a content inventory:

1.	 Logo,

2.	 Global navigation,

3.	 Introductory text (only on the home page),

4.	 Code editor (only on lesson pages),

5.	 Result area (only on lesson pages),

6.	 Progress bar (only on lesson pages),

7.	 Theory text (only on lesson pages),

8.	 Exercise text (only on lesson pages),

9.	 Lesson navigation (only on lesson pages),

10.	Sign-up form (only on the home page).

We’ll have two page types:

•	Home page (for the introductory text and sign-up form) and

•	Lesson page.

1 The CSS Flexible Box Layout Module (smashed.by/w3flexbox) is one of a few powerful layout modules
currently in development. Thus far, its implementation in browsers is limited. I have written a tutorial that
demonstrates the Flexbox specification using three boxes on a page: smashed.by/learnflexbox.

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

291

Let’s stop here. Obviously, this is laughably simple and incomplete, but it suffices as an
example. We are certainly missing a lot of stuff here (profile page, statistics on lesson
completion, etc.). On a large website, the content inventory might be huge and would
probably be split into several ones. But remember, this is not a functional specification.
We do not have to include every detail of every item of content. We’re dividing content
into the largest unique groups that make sense.

We would normally assign a number or letter ID to each item of content. Because
our example is simple, we’ll just use the numbers 1 through 10, as listed. The design of
the inventory is not important; a plain old text file will do, but you can make it as fancy
as you like.

The great thing about a content inventory is that it never breaks. Anything goes. The
client can yell anything they want, and you can just jot it down. We will find out soon
enough what will work and what won’t.

The entries in a content inventory can be embellished (for example, with descrip-
tions or screenshots of predesigned components), but don’t go overboard. I find that
mapping items of content to the page types is useful, like so:

•	Home page → 1, 2, 3, 10

•	Lesson pages → 1, 2, 4, 5, 6, 7, 8, 9

The order of items doesn’t matter at this time. We will get to that during wireframing.

CONTENT REFERENCE WIREFRAMING

One of the first steps many of us take in a Web design project (hopefully after a thor-
ough inventory of content) is to create wireframes. Wireframes, now arguably the
primary deliverable of the interaction designer, have evolved from simple line draw-
ings of boxes on a canvas to almost full-blown Web designs, devoid only of color, images
and detailed typography. Originally, they were a means through which to play with
design: placement, proximity, visual hierarchy, priority of space, etc. The content was
represented by crude boxes. Some designers still use them that way. But for many,
their purpose has changed.

Today, wireframes are often used as a deliverable to show the client what the web-
site will look like and how it will work before it has actually been “designed.” In fact,
these types of wireframes are designs; but they are unfinished and, thus, potentially
dangerous to show to the client. If the client likes certain aspects of it, any deviation

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

292

from it (whether in type, color, etc.) could turn them off. If they end up not liking the
design itself, well, then there goes a lot of hard work.

The wireframes of long ago (which many still use) are more akin to the thumbnail
sketches of traditional graphic designers. Many thumbnail sketches can be made
quickly, allowing for sufficient exploration of what would work and what would not.
The designer has to pay attention only to visual prominence and composition. These
types of wireframes are a tool for them, not a deliverable for the client. That doesn’t
mean we cannot involve the client this early on, but it would be to offer a glimpse into
our process, rather than to get them to sign off on our work. Approval is less of a prob-
lem when the client has accompanied you through the design process.

I call these thumbnail-ish wireframes “content reference wireframes.” If the client
does not like your content reference wireframes (if you have even shared them), then
you’ve lost only a few minutes of work. The purpose is not to show the client a “design”

Figure 10.2. This style of wireframe is common. While most likely useful, it looks so much like an actual
website that only the “Wireframe” label in the top right reveals that it is not. Both the visual design and
the content get detailed treatment here, a combination that would arguably be best handled through
an HTML prototype, because creating several variations for different screen sizes so early on in the
project would be tedious at best. To be fair, this early wireframe of a Wikipedia page perhaps served
its purpose. But its disadvantages for a future-friendly workflow are obvious. Image source: Fabrice
Florin, Wikimedia Foundation, licensed under the CC-BY-SA and GFDL license. smashed.by/wkpmckp.

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

293

but to show which content will be visible in a given context, roughly indicating placement
and composition, as a precursor to the visual design. This contrasts with the way many
wireframes are done today, which reduces graphic design to a coloring-book exercise.

Making content reference wireframes is simple. Using your content inventory,
determine which content and functionality must be on a given page, and then draw
boxes, each box representing one of those pieces of content or functionality. Do this for
every type of page necessary. You can name each box, or label it with a letter or num-
ber corresponding to an item in the content inventory. That’s it. Absolutely unsexy, but
quite effective—especially if we do not try to oversell it to the client.

This approach might sound strange at first, but we are still at the stage where figur-
ing out whether a log-in form will appear on the page and knowing roughly where it
will go would be useful. We just need to confirm these basic facts; there is no need to
visualize it yet.

Content reference wireframes can be done on paper or in a drawing application. But
I encourage you to create them in HTML and CSS. Yes, this does entail doing some CSS
layout, but it’s trivial, and the advantage is that you can create wireframes that adapt to
screen sizes, enabling you to start making decisions about responsiveness early on.

Content reference wireframes can be “designed” in the sense that a box can have a
background color rather than just an outline. That’s fine. Typographical features are
also OK. But other than that, keep it simple.

Here’s where content reference wireframes get interesting. By using CSS media
queries, we can start to work on rough layouts for different screen dimensions. This will
turn our two wireframes into countless wireframes, because loading them in a browser
on any device is easy; we can then explore the layout possibilities and show the wire-
frames to the client.2

I often show clients screenshots of wireframes in different dimensions (to avoid giv-
ing the impression that the development process will be quick), but showing the wire-
frames themselves on different devices does have its advantages.

We have coded two wireframes (Figures 10.3. and 10.4.) for our “Three Little Boxes”
website, one for each major page type, and each numbered according to the corre-
sponding items in our content inventory. I have added the names of the items, too, so
that we don’t have to constantly refer back to the inventory:

2 Ethan Marcotte’s wonderful article on “Responsive Web Design” (smashed.by/rwdala) is about more than 	
 media queries, but media queries are put in such a useful context that I recommend the article to anyone 	
 who is unfamiliar with them.

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

294

Figures 10.3. and 10.4.

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

295

Figures 10.5. - 10.8.

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

296

If we change something in the inventory, updating the wireframe is trivial. We have
used divs here to speed up the process, and we have added some CSS to style the boxes
and arrange the layout.

Figures 10.3.–10.8. show our two—yes, only two—wireframes at varying screen
widths. Equipped with CSS media queries, our HTML-based wireframes enable us to
explore multi-platform layouts early on. We can already start thinking about the prior-
ity and proximity of content at different screen sizes. Imagine trying to use a drawing
application to render these changes in a wireframe that is as rich in content as the one
we saw above for Wikipedia. Imagine the work involved for even minor variations.

STRUCTURED CONTENT DESIGN

As a starting point for wireframing, consider how our content would be designed if
no layout other than a linear one were possible—that is, the kind often seen in mobile
versions of websites, one item of content under another. This “mobile first” philosophy,
popularized by Luke Wroblewski, is rooted in accessibility and progressive enhance-
ment.3 You could say that the purpose is to design a base view of the app that works
reasonably well anywhere that plain HTML can be rendered.

3 Luke has spoken and written a lot about the mobile-first approach: smashed.by/mfirst.	

Figure 10.9. Simple structured content. Here’s the Three Little Boxes home page as I wrote
it in Markdown. Converting from Markdown to HTML is easy. I use Pandoc for this purpose.
Pandoc is a flexible, universal document converter: smashed.by/pandoc.

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

297

Ask yourself which content should go first? Which should go second? Which last? And
how will this affect the order of our source code?

Designer and developer Bryan Rieger actually designs with text early on in the
design process. This is essentially what we are talking about here: structuring and
prioritizing content as if we were designing a linear document.

Figure 10.10. - 10.12. These screenshots show our HTML-structured content in the browser.
The top left and bottom images show the browser’s default styles in Opera Mobile Emulator
and Firefox on the desktop, respectively. For the image at the top right we’ve started adding
typographical styling.

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

298

You could even think of it as designing for a word-processing document or article or
book. We are interested in the underlying structure of the content: this is a heading,
this is a quote, this is a list, etc.

Ideally, we should be using real content, which is why this step follows content
reference wireframing in our workflow. Once our content is structured, we can start
designing typographically: applying typefaces and type sizes, determining the base-
line grid, and adjusting the leading (or line height).

By the way, this can all be done in HTML and CSS. If you use plain-text markup,
such as Markdown, and convert it to HTML later, you will be able to do the structured
content design just as quickly as as you could in a word processor. But this way you will
also have some basic HTML and CSS to use for a functioning responsive prototype.

Once we have finished this step, we will have a very basic design for small screens.
Load the page on a mobile device and have a look.

Second, Enhance the Experience: 			
Platform- and Device-Specific Thinking About
Browser and Device Capabilities

If we have done it right, then our base content and functionality will work in most user
agents. A word of caution if you are building a Web app that requires specific technol-
ogy (such as a mapping application that needs CSS, JavaScript, images and GPS capa-
bilities as a baseline). In this case, a linear design might not work or even be relevant.
In a way, that’s too bad because we will be shutting users out. Just try to make as much
of the content as accessible as possible, and use your technological baseline as the
starting point. Our linear design will give us an idea of how the website might look and
work on some mobile devices.

But now we’d like to enhance the design and overall experience on browsers and
platforms that support various enhancements. A few examples:

•	A linear design is just a single column of content. We can change this for larger 	
	 screens and for when the user switches between portrait and landscape mode 	
	 on some devices. The layout could be made to fit more columns when more 		
	 space is available. Positioning elements differently might also make sense, 	
	 because users might interact differently with a larger viewport; you might 	
	 want to tweak or reposition the navigation, for example. You would also have to 	

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

299

	 rethink important pieces of content, since it is no longer simply a matter of 	
	 putting them near the top.

•	Some devices have capabilities that we would want to take advantage of, such 	
as camera or GPS functionality. Most of us would want JavaScript functional-
ity when it’s available (and it often is—but not always, especially on low-end
devices, and plenty of those are around). What about visual enhancements
such as font embedding and CSS gradients? Designing in actual browsers on
actual devices enables us to test not only whether these features work (and
work properly), but also the impact that these features have on performance.
We would gain insight into which features would be better excluded on certain
devices and platforms, while supporting them on others.

•	We might even want to add, remove or alter the content itself depending on the
platform or device. For example, we would certainly want the smaller versions
of images to be the default on small screens and mobile devices, while serv-
ing larger versions elsewhere. Also, we would not want to offer content that is
irrelevant to a particular use case; GPS-related content would only be relevant
where GPS is supported, so we would add it only for those devices.

To enhance the experience of structured content, we would at a minimum list the
types of devices that we would like to support, grouping them into “classes” of devices.
In other words, group devices with similar characteristics, so that you focus on classes
of devices rather than individual devices. We could cater only to iOS or Android, but
that would be too limiting. In the end, we can tweak things to get the app to look and
work just right on any device.

Don’t classify according to general physical shape, such as desktop, smartphone,
tablet, etc. These categories are less relevant than you might think. Instead, break
down devices (and, by extension, their default browsers) according to features your
app might require. Any factor can be relevant, be it touch capability, screen size, pixel
density, geolocation, local storage, SVG support and so on.

Focusing on features ensures that our decisions remain relevant even when new
devices come along that are hard to slot into conventional consumer and marketing
categories.

Marketing categories do not tell us what we need to know (such as, does SVG sup-
port exist and perform well in this browser on this device?).

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

300

UP CLOSE: DEVICE CLASSES

For “Three Little Boxes”, we really need to pay attention to device classes. The website
will be educational and will involve the user typing code in order to learn what the
code does. The code will be interpreted in the browser, and the result rendered in a sec-
tion of the screen.

Let’s be realistic: pulling this off on most mobile phones would be impossible. In
general, here are the device classes we will be dealing with:

•	HTML support: required for the text-based educational content 			
	 (theory and syntax);

•	 JavaScript support: imperative for the interactive coding exercises;

•	Large screens: not required for the text-based content, but useful 			
	 for the coding exercises;

•	Hardware keyboards preferable for typing code;

•	The browser should also support the latest Flexbox specification 			
	 (otherwise, the exercises will not work). Devices that meet all 			
	 of these requirements are ideal for our project.

But we have a serious problem. At the time of this writing, the newest Flexbox specifi-
cation is supported only in Chrome Canary, which severely limits our multi-device op-
portunities for this website. If this were a real website, we would be facing some hard
choices. Assuming we do not want to write a Flexbox layout engine in JavaScript, we
are stuck with Chrome Canary as the only browser in which the code for the exercise
will execute.

However, according to our content inventory and device classes, we could certainly
provide valuable textual content (Flexbox theory, syntax, etc.), and then provide inter-
active elements only when they would actually be used (i.e. when the required features
are available).

Deciding the best way to do this is complex and beyond the scope of this chapter,
but let’s imagine that we use JavaScript to test for support of certain Flexbox proper-
ties in the browser. If supported, then the interactive components could be added to the
website.

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

301

EXPERIENCE ENHANCEMENT VS. KEY SCENARIOS

When entering the enhancement phase, we should constantly ask ourselves, “Is this
functionality in its current form absolutely essential to using the website?” If it is, then
it is what I and some others like to call a “key scenario”—that is, one of the primary
tasks of the user on the website, which should in most cases not be considered an “en-
hancement.”

Does this imply that enhancements are frivolous or non-essential? Certainly not.
Take the example of a simple Web app for a to-do list. The goal would be to make the
app usable regardless of the platform; the user agent would only have to be able to sup-
port HTML, including basic functionality for forms. It stands to reason that a to-do app
would have to allow the user to do at least a few things:

•	Add to-do items,

•	Edit current items,

•	Mark items as completed,

•	Archive or delete old items.

These are our key scenarios. Of course, we could have more (and most to-do apps do
have more), but for now let’s focus on these actions, which are essential to the purpose
of the app.

In a world without JavaScript, we would display a form containing one or more text
fields in which the user could input one or more items, as well as a button to submit the
items. The content of this form would be sent to the server, and a new page would be
returned to the user with their to-do items. Each item might have a couple of options
(perhaps as checkboxes), and you could perform actions on the items at the click of a
button. Again, the data would have to travel to the server and back, but at least it would
work.

In any browser that supports JavaScript, we would want instantaneous action:
marking a task as completed would perhaps strike out the text and/or add a check
mark, and the user would see the change immediately. This is neither a key scenario
nor a frivolous enhancement: it’s a highly useful enhancement that adds a lot to the us-
ability of our app. JavaScript-dependence is not necessarily a bad thing—such depend-
ence could probably be avoided in some cases—but if it can be avoided, why not start
with the basic functionality at the lowest level? Remember that most of the high-traffic

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

302

and compelling websites that we know today were built when JavaScript was not
nearly as widely used. Still, these websites cater to millions of users. Building a fantas-
tic user experience without JavaScript is possible; a great experience is about content,
form and execution, not tools.

“Three Little Boxes” poses a slightly different problem. While the exercises are
the primary use of the website, there is definite educational value in presenting clear
information about the Flexbox specification, its syntax and how to use it. It is not all or
nothing; being able to read the textual information is also a key scenario. This textual
information contains code examples and reads like a tutorial.

However, the experience is enhanced in Chrome Canary (most likely on desktop
and laptop computers), where the interactive components are added to the exercises.
This is an example of altering content based on device and browser features. When it’s
done well, users of an unsupported platform won’t feel like they are missing essential
content. The user of a seven-year-old feature phone would not expect the latest Flexbox
code they input to render properly, and neither should they be confronted with non-
functioning interactive components.

We need to make sense of where and when to present certain content and layouts.
I use a visual tool that I call a breakpoint graph, which helps me to map out the points
where content and design might change.

BREAKPOINT GRAPHING

Earlier we looked at three things we might want to change for certain device classes
and/or screen sizes:

•	Design and layout,

•	Functionality and features,

•	Content.

The points at which these changes take place can be called breakpoints. They are most
often set in relation to the width of the viewport in pixels, in which case they are usu-
ally implemented with CSS media queries and/or JavaScript. For example, you could
say that when the viewport is wider than 600 pixels, resort to layout X.

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

303

Breakpoints are not limited to viewport widths. Any characteristic of a device class
can be a breakpoint: GPS (versus no GPS), camera (versus no camera), etc. We can plot
these points out on a breakpoint graph.4

A breakpoint graph gives the designer and developer an overview of the aspects of a
website that will change according to certain parameters of the device. These changes
can be represented by thumbnail-sized wireframes (to show changes in layout) or
labels that identify particular aspects (to show changes in function or content). We can
plot device classes (and even particular devices) on the breakpoint graph. Not only is
this useful for the development team, but it offers the client insight into how the web-
site will adapt in certain situations.

Making a breakpoint graph is fairly quick and easy. It looks like a timeline, with a
horizontal line representing the full spectrum of parameters. These parameters could
be anything: screen size, support for particular technology or even a device class. The
parameters are then logically grouped and plotted above or below the horizontal line.
Plotting the parameters in such a way to show their relationship to each other can be
helpful (for example, a device class might correspond to a screen size), but that is not
always possible. After research, once you have determined the breakpoints, each can
be represented by a symbol on the line (we have used a circle in the graph below). Fea-
ture sets are represented by rectangular shading behind the horizontal line, spanning
the breakpoints between which they are supported. Thumbnail sketches of the layout
at different screen sizes can be included under the corresponding breakpoints.

Be aware that setting breakpoints for particular devices, while sometimes a require-
ment, can cause problems. The changes you make for a platform might look good and
work well on certain devices, but perhaps not on others with similar features. Plenty of
websites today use device detection for this reason.

What we’re doing here is planning for progressive enhancement. The goal is to pro-
vide the best possible experience in every device context. We do this by providing the
most basic experience for the most basic devices (in some cases, with just some HTML)
and enhancing the experience with features as increasingly sophisticated devices and
browsers support them. Progressive enhancement minimizes the risk that the product
won’t work at all on major classes of devices. Not everyone is on iOS. This design planning
is essential. It provides valuable information to the designer and developer and gives
them a chance to experience the fun, freedom and speed of responsive prototyping.

4 Stephen Few’s “Bullet Graph Design Specification” was the inspiration for my breakpoint graphs: smashed.by/
bullgraph (PDF). See the Wikipedia article for more information: smashed.by/bullgraphwiki. Breakpoint graphs
and bullet graphs differ, however, and I have not (yet) written a formal specification for breakpoint graphs.

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

304

DESIGNING IN THE BROWSER: 						

ADAPTIVE AND RESPONSIVE PROTOTYPING

You may have heard of the practice of designing in the browser. You may have thought,
as I certainly have, “That sounds fantastic, but how can I do that quickly when the
design hasn’t been approved yet? Isn’t that the same thing as building static templates
during the design phase? Making a mockup in Photoshop is much quicker.” This is the
dilemma: we want to produce something that the client can see and approve, but we do
not want to start building the actual website yet.

I have struggled with this problem for a long time, and the answer varies according
to the project. I have found that if I start in HTML during the wireframing phase, then
simply extending those wireframes into a full-blown visual design is much quicker
and easier than having started in an image editor. The same advantages that apply to
HTML wireframing apply here: you get to work in the target technology, and you can
evaluate (and show to the client) variations such as changes in viewport width.

We can view these HTML mockups as an evolution of the Web-based wireframe.
In this case, the wireframe gives us an HTML base to build upon. We simply take the
structured content design, plug it into the wireframe, and we are well on our way
to having a responsive design—right in the browser! This has the added benefit of

Figure 10.13. A breakpoint graph for "Three Little Boxes."

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

305

enabling us to test the design on actual devices very early on. As technologies evolve—
high-density displays, for example—and widen the gap between the Web experience
and static images, the need for designing in the browser will increase.

We have seen that our basic “linear” structured content design is best done in HTML
and CSS, and the reason is because we are going to start fleshing out that basic typograph-
ical design with CSS. We will load this file (or the multiple files, if you have them) into sev-
eral browsers on several devices so that we can see what happens and adjust accordingly.

This might sound like ad-hoc design, but it doesn’t have to be. I am not suggesting
that you skip the tried and true steps in graphic design of thumbnail sketching and
rough sketching. We should always think and sketch before executing on the comput-
er. Please, keep doing those things. I am suggesting to execute the design or design pro-
posal in Web technology, rather than in an image-editing program such as Photoshop.

Blasphemy? I think not. Our medium affords us the luxury of instant publication.
Anyone can create a Web page in seconds. We could not do that in print; when work
comes off the printing press, there is always a slight tension as we go to check how
everything has turned out. Why do we insist on designing static images, having clients
approve them, and then producing the very same work again in HTML? Perhaps we
think designers cannot or should not code. While debatable, that is not necessarily an
obstacle. In the worst case, designers could sketch on their own and then sit down with
a front-end developer to produce a design in the browser.

To put it simply, we can skip the image-editing apps for designing and use them
solely to edit images, which makes sense. Producing our design in HTML and CSS
brings the following benefits:

•	The designer sees where to tweak the design to make it look better in certain 	
	 browsers and on certain platforms. As a bonus, they learn details about Web 	
	 development along the way.

•	The developer sees where things go right and wrong from a technical stand
point. As a bonus, they gain insight into the graphic design process (unless they 	
are the designer).

•	The client and other stakeholder see—and learn to accept—the differences 		
between browsers and platforms. In seeing their project come to life, they start to
understand just a wee bit more about how the Web works and come to appreciate 	
that the power of the Web lies in content being viewable on all devices.

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

306

Showing the client screenshots of these
HTML prototypes is helpful. I will take
screenshots in different browsers, viewport
widths and/or devices5 and say to the client,
“Here are some images of how this design
could work in different scenarios.” Present-
ing them as images first helps to keep the
discussion on design issues and avoid in-
depth analysis of particular pieces of content.
But if the client does want to change the style
for, say, a heading, you can do it in CSS and
take new screenshots very quickly. Imagine
making those changes in several different
Photoshop documents—not fun! The client
won’t notice (or care) that these images have
not come from Photoshop.

Sharing prototypes as images is not intend-
ed to deceive the client. Rather, it avoids giving
the impression that you are further along in
development than you actually are, which is
important because the focus should remain on
the design at this point; you will get to usabil-
ity and implementation later. Actually, you
are further along than you otherwise would
be, but your client should not be concerned
with this. This is an advantage to you and your
team in following a technologically consist-
ent workflow. The client will also be pleased
that, when the website is finished, it will look
almost exactly like the wireframes.

How you create the design prototypes is
up to you. Some static website generators can

5 I cannot stress enough the importance of testing in actual browsers on actual devices. When possible,
even take screenshots on the devices, because simply resizing a desktop browser window seldom emu-
lates what happens on a particular device well enough. Emulators do not always tell the whole story either,
but they are still better than a resized desktop browser.

Figure 10.14. A Taking our plain, structured
content in HTML, we have created a design
for it in linear form. Based on the design
sketches, we have started adding styles to
it. Then, referring to our breakpoint graph,
we can use media queries to start coding the
design for increasingly larger screens and
browsers that support our desired features.

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

307

be helpful: content is submitted in Markdown files, which are piped through templates
to create a static website. In the end, these are merely tools; you will still have to make
a few HTML templates and CSS files for the design. If you have already made the initial
wireframes this way, then it is usually a matter of piping the content into the various
boxes on the page and applying CSS based on your design sketches.

Many designers effectively use CSS meta languages and/or preprocessors or compil-
ers such as SASS and LESS to make significant changes to the CSS in relatively short
time. Combined with version control, these tools can make designing in the browser
quicker, easier and more fun than working in an image editor. Trying out the client’s (or
your own) Great New Idea becomes trivial, and the process can help keep the project on
track and on budget by cutting down on the effort required to explore new ideas.

Once the client has approved the basic designs, you can fine-tune a bit and present
some important pages as full-blown HTML prototypes as opposed to screenshots. This
is easy: you are most of the way there because your design is already in HTML. Use this
to your advantage by focusing on contingency design: error messages and state changes
and the like.

You now also have the time to consider these things, because you have skipped the
step of visually parsing the Photoshop file and inferring design subtleties from it.

Let’s not be too harsh on image editors, though. Applications such as Photoshop are
still fantastic for quickly coming up with design and color studies and for developing
visual assets. Use Photoshop to quickly experiment with things like color, image and
some of the typography. Photoshop works well for putting together mood boards of
these elements in the conceptual phase, before producing design impressions.

In the end, designing in the browser in this way brings huge benefits:

•	Little to no time is spent in an image editor. All time spent on the design is time 	
	 spent on code—code that could be used in whole or in part during development 	
	 of the website itself. Using a version control system such as Git will allow you 	
	 freedom to experiment with your design in code without worrying about the 	
	 permanence of changes.

•	Executing most requests from the client is usually trivial (except perhaps 		
	 for changes to the layout). And the changes will be immediately visible in the 	
	 various viewport widths, etc. Making such changes in an image editor would 	
	 be extremely time-consuming—and not fun.

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

308

•	Showing the client changes in state (for example, logged in versus logged out) is 	
	 possible with a minimum of effort.

•	 If you are attentive to the quality of your code in the prototyping phase, a lot of 	
	 it will be usable in the production website.

Building a prototype as both a design impression and a working prototype might seem
counterintuitive, but I urge you to try it out a few times to get used to the idea. It really
can save a lot of time, and you never have to leave your target technology. It yields few
surprises compared to the traditional process of designing websites.

A New Way of Thinking, A New Way of Designing

Let’s see our new workflow, then:

1.	 Create an inventory, listing our content and functionality.
2.	 Create quick wireframes in HTML and CSS, labelling the boxes in the wire	
	 frames according to the content in our inventory.
3.	 Put some real content into a structure, in much the way we would for a book 	
	 or article.
4.	 Produce a linear design for this content.
5.	 Consider device classes, and create a breakpoint graph.
6.	 Sketch, brainstorm and conceptualize the design for the various breakpoints.
7.	 Combine the content from the linear design and the HTML wireframes, 		
	 building the design as a prototype in HTML.
8.	 Show the client screenshots of this prototype, presenting them as design 	
	 impressions.
9.	 Upon getting approval for the design impressions, (optionally) build on the 	
	 HTML prototype and present it (for, say, user testing).
10.	If you have done things right, most of the code can be used in the production 	
	 website.

This workflow is effective for both redesigns and new designs. It is a future-friendly
approach, because we are considering various device classes from the beginning. Thus,
new devices that come on the market probably will not break the website.

Workflow Redesigned: A Future-Friendly Approach CHAPTER 10

309

The workflow is efficient because each step is incorporated into the following step. Both
the designer and the client are consistently confronted with real-world problems, such
as browser rendering.

In my experience, clients like this workflow. It does not build to a visual anticlimax
the way we see with the traditional design workflow, where production rains on the
Photoshop mockup’s parade. It builds slowly, incrementally, and the client could be
involved in the entire process. There are no surprises. Each step yields a more appeal-
ing result than the last. Things get concrete very quickly, and the client sees early on
the effects of their decisions.

Some designers and developers are already working this way. For some, perhaps
including you, it will take some getting used to. Try out bits and pieces in your projects
today and discover what works for you. The process is probably drastically different
than the way you are used to working, but it is an effective way to navigate your jour-
ney as a Web designer.

CHAPTER 10 Workflow Redesigned: A Future-Friendly Approach

310

About the Author
Stephen Hay (1970) was born in Orange, California. He now lives
in Leeuwarden, a city in the northern part of The Netherlands. After
getting his BA in graphic design and fine art, he put his dreams of
becoming a painter aside and worked his way from designer to art
director in a design agency, where he specialized in identity and
packaging design. Stephen made his first website in 1995 and fell in
love with the medium; the Web seemed the ideal mix of design and
technology. After 10 years as creative director at a front-end Web
development firm, he became an independent consultant, which af-
fords him more time to work on the things he loves to do. He loves
to help people learn, and he enjoys speaking and writing about the
Web. But he’s not all work and no play: Stephen played baritone
saxophone in a jazz quintet and enjoys sleight-of-hand magic. He is
also an art and film lover. The greatest lessons he has learned in his
career are to think critically, to do what you enjoy, to do it as well as
you are able, and to keep learning.

About the Reviewer
Bryan Rieger was born in the year that the Beatles broke up, Jimi
Hendrix had a number one and the world’s population reached
3.6 billion. He is from Toronto and tends to live much of the year
in Edinburgh and tries to spend the rest of it in Bangkok. He has
moved around fairly regularly and has considered many places to
be home, including Charlottetown, Vancouver, Surabaya, Phuket,
Hong Kong, Manilla, London, Glasgow and Brighton. Home is
wherever he happens to be now, which fits his life motto well:
“Whatever works.” Bryan’s education includes a little design,
theater and animation at various schools, times and levels. Bryan
began creating HyperCard stacks shortly after leaving art school
and eventually fell into UI design. He worked at various agencies
throughout the dot-com years, and after burning out in 2003 he
took a sabbatical to wander Southeast Asia for a bit and dive into
this thing called mobile. Ever since, he’s been working on mo-
bile operating systems, apps and websites for clients around the
world. Bryan loves to travel, and his favorite color is white—it just
has such a sense of possibility. The biggest lesson he has learned
over his career is to question everything, always. His message to
readers is, “Plus ça change, plus c’est la même chose.” Be flexible,
embrace change...

Becoming Fabulously
Flexible: Designing Atoms
and Elements
Written by Andy Clarke

Becoming Fabulously Flexible: Designing Atoms and Elements CHAPTER 11

CHAPTER 11

312

Becoming Fabulously Flexible: Designing Atoms and Elements

here are three words that I believe sum up
working on the Web right now for many of us.
They are:

•	 Responsive.
•	 Web.
•	 Design.

It was Ethan Marcotte who gave that combination of fluid grids, liquid images and
CSS3 media queries a name, and after he did, developers all over the world have been
publishing some pretty fabulous boilerplates, packages, scripts and template solutions
to many of the challenges created by this thing Ethan called Responsive Web design.

Responsive Web design isn’t simply about how designers and developers use tech-
nologies like CSS3 media queries, though. It isn’t about how we handle serving different-
sized images or tackle data tables responsively either. These are just technical challeng-
es; becoming responsive isn’t merely about overcoming technical problems. It doesn’t
mean learning new languages or how best to use them either. I wish it were that simple.

But it isn’t.
Designing responsively is much, much more difficult.
Like it or not, responsive Web design challenges everything we know about Web

design for everybody involved in the process. That’s why, in this chapter, I’m going to
demonstrate how the old ways of designing are no longer relevant, and I’ll introduce a
new way of designing responsively that has worked for me and my clients.

CORE TO WHAT YOU DO

I don’t think I’m alone in believing that responsive Web design represents a fundamen-
tal shift in what it means for us to design for the Web. Andy Hume wrote:1

“For me responsive design is another example of web design getting back some of
its Dao. That’s why it’s not an added extra or a feature. It’s core to what you do.”

I agree with Andy, and although I know some people see responsive Web design as just
a trend like many others, I believe that it’s perhaps the biggest and most important
change in Web design since the Web began. I wrote once:2

1 Hume, Andy. “Responsive by Default,” smashed.by/respdef
2 Clarke, Andy. “I Don’t Care About Responsive Web Design,” smashed.by/respcare

T

CHAPTER 11

313

Becoming Fabulously Flexible: Designing Atoms and Elements

“Anything that’s fixed and unresponsive isn’t web design anymore, it’s something
else. If you don’t embrace the inherent fluidity of the web, you’re not a web designer,
you’re something else. Web design is responsive design. Responsive Web Design is
web design, done right.”

I wasn’t exaggerating. I stand by that, even if some people think I was getting a lit-
tle carried away. I believe that considering how a design will respond as it’s displayed
across a myriad of device sizes, shapes and capabilities is one of the most important
aspects of a Web designer’s job today.

HOW, WHEN AND WHY?

Responsive Web design changes what we make for the Web, so that means how we make
it changes, too. It’s not just designers and developers who are affected. Responsive Web
design affects everyone who thinks up, designs, builds, pays for or uses the Web.

•	Content strategist? You.
•	 Interaction, experience or graphic designer? Yup.
•	Front- or back-end developer? You too.
•	Boss, client or customer? You betcha.
•	User? You too, and in a really good way.

Responsive Web design asks more questions than it offers answers. It affects the work-
ing relationships and interactions between everyone involved in every process—from
content specialists to designers and developers of all kinds, to our bosses and custom-
ers who ultimately approve and pay for the work that we do.

It challenges the how, when and why. These challenges won’t always be easy to over-
come and the changes they bring won’t always be popular. There will likely be plenty of
resistance from people who can’t or won’t see the need to adapt.

EASY. REALLY EASY.

In 1998, when I started my own tiny design studio, the biggest technical issues I faced
were the differences in how Internet Explorer 4 and Netscape 4 rendered my designs.
Truth be told, even though I had to work with immature technologies and around ter-
rible browsers, I had it easy back then. We all did.

CHAPTER 11

314

Becoming Fabulously Flexible: Designing Atoms and Elements

Really easy.
Here’s how I worked. I bet you did the same. Maybe you still do?

1.	 I’d make a design in Adobe Photoshop or Macromedia Fireworks—a single design
that I intended for everyone to see, no matter which browser they used or how big
their screen was.

2.	 Then I’d show that design—as a comp or mock-up (I call them static visuals be-
cause they’re flat and non-interactive)—to my clients.

3.	 After that, I’d make changes based on their feedback. I’d rework and export new
static visuals. When they were approved in a second or third or fourth round of
approval, I’d chop up the design into HTML and CSS, publish it and be home in
time for tea and reruns of Animal Magic.3

Back then, making a single design was acceptable because, for us and our bosses and
customers, the Web was pretty much only accessed from the desktop. But we can’t
make just one design today. It isn’t that simple anymore because whereas once we had
two important desktop browsers, today we have potentially hundreds on all kinds of
devices that people use to access the Web.

ACCEPT THE EBB AND FLOW OF THINGS

Even as far back as the turn of the millennium, we should have realized that the Web
is fundamentally different to other media and that part of its uniqueness is our lack of
control over how people view and interact with the content and services we provide on
it. The truth is, we should have always designed for the flexible nature of the Web.

Actually, some people did realize, and they tried to warn us of our foolish ways. In
2000, John Allsopp wrote what many consider to be the most important article about
Web design ever written: “A Dao of Web Design.” In it, John wrote:4

“The control which designers know in the print medium, and often desire in the
web medium, is simply a function of the limitation of the printed page. We should
embrace the fact that the web doesn’t have the same constraints, and design for
this flexibility. But first, we must accept the ebb and flow of things.”

3 smashed.by/anmag
4 Allsopp, John. “A Dao of Web Design,” smashed.by/dao

CHAPTER 11

315

Becoming Fabulously Flexible: Designing Atoms and Elements

Good advice.
Did we take it?
No. Silly person.
What did we do?

We fooled ourselves into thinking we were in control. We tried to exert the same levels
of control that we had over print. We largely ignored that troublesome flexible Web and
we tried to make the Web fixed instead. Here’s how.

DESIGNING FROM THE EDGES OF A CONTAINER

When I moved from print to the Web, the Web was new. There were no rules. So I, and
designers like me, imported principles, ideas and tools we knew well. The people who
hired us were new to the Web, too, so they brought with them the processes from pre-
press and print that had worked for them.

I used Photoshop to design websites, and I began every project by making a new
canvas—I drew a landscape-format rectangle—then I filled it with stuff.

Those first rectangles measured 640 pixels wide by 480 pixels high because that was
the resolution of most PC monitors at the time. Designers were used to being in control,
so we went to extraordinary lengths to maintain it and did crazy things like scripting
browser windows to snap to a size and letter-boxing content using five or more frames
in a frameset.5 That 640 pixels rectangle was tight because—if you can remember back
that far—clients didn’t want people to scroll (at all) and everything had—just had—to
appear above the fold. 640-pixel screens soon gave way to 800 (by 600), so designers
drew bigger rectangles to match. The feeling of wide open space was intoxicating, but it
wasn’t long before even those big rectangles felt cramped and we started to look beyond
800 to 1024 (by 768). Over and over again, at every step up, we studied server logs and
statistics and agonized over whether it was safe to go wider.

It might seem strange today looking back, but in 2005, fixed versus fluid layouts was
a really hot topic. No, no, it really was.

I interviewed Jason Santa Maria about his redesign of A List Apart, the website for peo-
ple who make websites.6 I wondered why Jason had decided on fixing A List Apart’s width
to 1240 pixels, rather than implement a fluid layout based on percentages. Jason replied:7

5 Dreamweaver FAQ: Using Frames To Align Page Content, smashed.by/tut
6 Santa Maria, Jason. “A List Apart Redesign,” smashed.by/mari
7 Clarke, Andy. “A List (taken) Apart,” smashed.by/andy

CHAPTER 11

316

Becoming Fabulously Flexible: Designing Atoms and Elements

“ALA has always tried to be one of those sites at the front of the pack. We don’t
support 800 × 600 anymore, nor do we 640 × 480. Do you? People flipped when
sites stopped supporting 640 × 480… now no one says a word. Things change.
Trust me, you are going to see more sites stretching out their legs and putting
their feet up.”

People were outraged at the time by that new, wider A List Apart.
Well, not really outraged.

Jeremy Keith (who’s nothing if not consistent) echoed Jon Hicks’ concerns8 about the
apparent dichotomy between “designer sensibilities vs. user preference.” Jeremy said:9

“Arguing about 640, 800 or 1024 pixels is like arguing about whether Pepsi tastes
better than Coke when really, a nice glass of water would be much more refresh-
ing. The numbers game is a red herring. A big fixed-width red herring.”

For years we fooled ourselves into thinking that because 640, 800, 1024 or above were
commonly used screen resolutions, we could design for those fixed dimensions. We
desperately clung to fixed-dimension design because the reality—that the Web is a
fluid medium with no common canvas size, no edges—was simply too daunting.

THE WEB HAS NO EDGES

Because today we can’t predict the size or format that our content will be viewed in, the
Web effectively has no edges. So, what do designers do?

We create them. When 640 turned to 800 and then to 1024, we used progressively
larger fixed dimension canvases as the starting points for our designs. We drew bigger
and bigger rectangles and we filled them with our content from the edges of the canvas
working inward.

When Steve Jobs (bless his soul) pulled the first iPhone, with its Safari browser,
from his pocket in 2007, it had two orientations within one device. The iPhone’s pan,
pinch and spread gestures also reinforced the fact that edges are irrelevant. The Web
changed forever that day, thanks to that one device. So, what did designers do?

We drew a small rectangle. 320 pixels wide and 480 pixels tall.

8 Hicks, Jon. “Is 1024 OK?,” smashed.by/hicks
9 Keith, Jeremy. “A List Too Far Apart?,” smashed.by/runaway

CHAPTER 11

317

Becoming Fabulously Flexible: Designing Atoms and Elements

After Steve sat on a couch and unveiled the first iPad, we sat and made our canvases
1024 by 768 pixels again. We stuck with canvas-in, fixed-dimension design because
that’s what we knew and that’s what our bosses and customers expected.

Have you heard that definition of insanity: doing the same thing over and over
while expecting a different outcome? That’s how we’ve worked until now. The rectan-
gles grow, then shrink, then grow again. All the time they multiply and all the while
our thinking stays the same.

BRINGING A KNIFE TO A GUNFIGHT

We shouldn’t be too hard on ourselves. The software tools we’ve cherished have done
their level best to keep fixed-dimension alive. Think about it. What’s the first action we
take when we start a new design in Fireworks and Photoshop?

File → New
 N.

Then we give that new document a fixed canvas size.

Ask yourself, is the reason why so many websites are fixed-width and centered a direct
result of our clients seeing, then signing off on, fixed-width visuals?

Although software vendors like Adobe have incorporated Web design tools into
their products, there’s nothing in those tools that can help us design responsively. They
can’t even help us demonstrate hover states or other transitions, let alone demonstrate
the ways that flexible layouts affect how type and other elements reflow. Jason Santa
Maria again:10

“Every element on a webpage has the ability to affect the layout of other ele-
ments. We should be able to specify what actions to take (float, clear, wrap, etc.)
when that happens. Additionally, a browser window is a fluid canvas; desktop
design apps only work with a fixed canvas size, making comping a fluid/flexible
design little more than a guess.”

Our current software tools, in particular Photoshop and Fireworks, are simply incapable
of handling the demands of responsive design. They’re bringing a knife to a gunfight.

10 Santa Maria, Jason. “A Real Web Design Application,” smashed.by/rwdapp

CHAPTER 11

318

Becoming Fabulously Flexible: Designing Atoms and Elements

THAT AWKWARD FACT

For the longest time, the hardest part of designing websites wasn’t dealing with the fact
that people experienced our designs on different-sized screens. That’s because most of
time we didn’t deal with it.

Instead, we ignored that awkward fact and carried on believing that if the majority of
people had a screen big enough to display our design, then everything would be OK.

When the iPhone made us realize that our work wouldn’t always be “(best) viewed in a
modern browser at 1024 pixels or above,” our first response was to create an iPhone-specific
design, in addition to one for the desktop. This immediately doubled the time for design,
feedback, corrections and approval.

As more smartphones, eReaders and tablets appeared, it was common for bosses and
clients to ask for specific versions of a website or application for those, too.11

�� iPhone
�� Android
�� iPad
�� Kindle Fire

But designing separate versions might mean three, four, sometimes five times the design work.
Three, four, five times the length of the approval cycle. Three, four, five times the meetings!

With so many characteristics, capabilities and sizes to deal with now, making multiple
fixed-dimension designs isn’t appropriate, economical or practical, nor is it the best use of
a designer’s time and talent. Creating several fixed-dimension designs wouldn’t benefit us
technically either, when we come to convert those visuals into code. As Stephanie Rieger
writes in “The ‘Trouble’ With Android”: 12

“Designing to fixed screen sizes is in fact never a good idea… there is just too much
variation, even amongst ‘popular’ devices.”

So, instead of thinking about individual designs for separate devices, we should start to
think, as Ethan Marcotte suggests, about a single design that has many facets, which lie
along what we should think of as a fluid continuum:13

11 See chapter seven for an overview of common smartphone screen resolutions and pixel densities.
12 Rieger, Stephanie. “The ‘trouble’ with Android,” smashed.by/trouble.
13 Marcotte, Ethan. “Responsive Web Design,” smashed.by/rwdala.

CHAPTER 11

319

Becoming Fabulously Flexible: Designing Atoms and Elements

“Rather than tailoring disconnected designs to each of an ever-increasing number
of web devices, we can treat them as facets of the same experience.”

I love this way of explaining design in a responsive context— many facets of one experi-
ence—because it echoes so well the “ebb and flow” that John Allsopp described in his Dao.
I also like to think of design as a river, starting narrow at the source and becoming wider
towards the sea. We can never predict where along its course someone will experience our
design, so we must make it flexible.

This raises questions. If we shouldn’t make separate fixed-width designs, what should
we make? What should be our process? How can we design for a Web without edges?

“Hey, This Is What I Made.”
It’s normal today for us to make one or several fixed-width static visuals to represent the
website we’re creating. There are several reasons why we do this.

FOR DESIGNERS

Photoshop and Fireworks are fabulous tools for creative experimentation and for helping
us solve problems and define a project’s visual direction. It’s sometimes even the act of us-
ing Photoshop and Fireworks that can help us —sometimes accidentally—arrive at a result
that would be difficult to accomplish by any other means. Finally, the result is something
we can point to and say to our bosses and customers, “Hey, this is what I made.”

The problem with static visuals—as I’ve written many times—is not simply that they
are bad at conveying the realities of a modern interactive website: it’s that, when used in-
correctly, they set the wrong expectations. Because designers use them as a way of getting
sign-off for a design, our bosses and customers no doubt expect that the finished website
will look precisely like the visual. After all, that’s why we showed it to them.

But not all browsers can render a design in the same way. All have different capabilities
that the static visual ignores. Therefore, it was nobody’s stupid fault but ours that we then
spent hours hacking our HTML and CSS or applying JavaScript patches in a vain attempt to
make our website look the same as the visual in every browser.

That’s why, in the future, designers need to accept that what they include in a static vis-
ual may not appear the same to every person or on every device. They must also learn to set
the right expectations from static visuals, and make it clear to their bosses and customers
that the visuals represent only how a website might look in some browsers on some devices.

CHAPTER 11

320

Becoming Fabulously Flexible: Designing Atoms and Elements

FOR DEVELOPERS

Static visuals can be useful tools for developers tasked with implementing a design in
code. Visuals act both as a blueprint for developers and as a benchmark for bosses and
customers to measure how well the final website matches the design vision as ex-
pressed through that visual.

But from now on, developers must accept that when they receive a static visual, it
represents only a guide for how a design might look. Developers must learn to make lay-
out decisions, including how design layouts adapt to different screen sizes and devices.

FOR CLIENTS

It’s conversations around these static visuals and between designers and our bosses
and customers that can be the most valuable parts of a creative process. If the cor-
rect expectations are set—and bosses and customers understand the meaning of what
they’re looking at—then static visuals can be enormously helpful in describing intent
and soliciting comments and constructive criticism.

The trouble is, the correct expectations are rarely set, and the more we ask of static
fixed-dimension visuals, the less appropriate they become and the less effective they
are as tools through which to communicate design. In particular, static fixed-dimen-
sion visuals don’t work in a responsive context because they make it easy for people to
confuse design with layout.

Design Isn’t (Always) Layout
Has a client ever said to you, “I don’t like the design”?

If that has happened, did you dig a little deeper and discover that it wasn’t the de-
tails of your design they objected to? I’ll bet it wasn’t the typefaces or type treatments
you chose. They went unremarked. It wasn’t the way you’d used color, either. Nor your
finely crafted line work, borders or shading. Perhaps it was, “The sidebar should be on
the left, not the right.”

In other words, your client was commenting on layout but expressing their criti-
cism of the design.

It’s not unusual for bosses and customers to include layout in the same conversation
as other aspects of a design: typography, color and texture. Designers do it, too, because
for years we’ve been making and demonstrating fixed-width visuals that have included
all these things.

CHAPTER 11

321

Becoming Fabulously Flexible: Designing Atoms and Elements

From now on we need to accept that design and layout must be separate from each
other. The design of components and the arrangement of those components horizon-
tally and vertically on a grid are now two different issues. Whereas the layout’s ar-
rangement of components will undoubtably be different across screen sizes, the design
of those same components will almost certainly transcend layout.

DESIGNING COMPONENTS FIRST

Think for a moment about the components that you place in almost every design. Your
list will almost certainly include:

•	boxes;

•	data tables and other data panel types;

•	 images (content and iconography);

•	 interface elements (carousels or scrollers, and so on);

•	navigation (several levels);

•	 type.

Pay attention. This is an important part. Design in the absence of layout becomes the
styling of these components. How these parts look is now what we mean by the design.
More specifically, the look and feel of these parts is what designers can and should
work on first, long before any thought is given to layout. I like to think of the approach
as designing page components at an atomic level first.

Now, I know that the idea of designing components like this, out of context and
without layout, might sound strange—particularly if, like most of us, you’ve been used
to designing Web pages the traditional way. But, truth be told, we’ve been abstracting
design ideas like this for the longest time.

MOOD BOARDS

Mood boards have long been a fabulous way to collect inspiring materials. Whether we
keep collections on our computers in applications like Evernote, use online services
like Pinterest, or simply stick them to a large mat or mounting board, it’s the combina-
tion of different elements that expresses a mood.

CHAPTER 11

322

Becoming Fabulously Flexible: Designing Atoms and Elements

Our mood boards might have a contemporary, chintzy or traditional feel, but however
we choose to name it—a look, mood or personality—the important thing to remember
is that we’re describing style. Of course, we don’t have to start a design process with
paper, scissors and glue. We can keep our hands clean if we prefer.

Now, when we design responsively, we could start by styling components as indi-
vidual, but connected, parts of a design.

Adobe Photoshop and Fireworks may not be the perfect Web design tools, but they
are still valuable for designing every kind of component. To help you break away from
thinking about layout at this stage, try starting with a Photoshop and Fireworks canvas
that’s 10,000 by 10,000 pixels or bigger. On this design sheet, group elements into head-
ings, body text styles, form elements, buttons, error messages and more. When needed,
move components around the sheet to see how they look in relation to each other.

Trent Walton wrote:14

“Web designers will have to look beyond the layout in front of them to envision
how its elements will reflow & lockup at various widths while maintaining form &
hierarchy. Media queries can be used to do more than patch broken layouts: with
proper planning, we can begin to choreograph content proportional to screen size,
serving the best possible experience at any width.”

The separation of design from layout that we achieve when we design at an atomic level
is important because it helps everyone—the designer and their boss or client—focus on
the details in a design while setting no expectations for how components will ultimate-
ly be arranged across various screen sizes or devices.

For the last several months, I’ve been using design sheets as a way to demonstrate
designs to my clients. I’ve found them to be extremely effective, although they require
a few minutes of explanation to clients who haven’t experienced this way of working
before. We can ask everybody involved, “Is this the mood of the design we’re striving
for?”

Design sheets are a fabulous tool for clarifying a client’s aspirations very early in
the design process. Instead of encouraging vague statements such as “I don’t like the
design,” the approach helps us to be precise when we discuss design.

14 Walton, Trent. “Content Choreography,” smashed.by/trent.

CHAPTER 11

323

Becoming Fabulously Flexible: Designing Atoms and Elements

•	How clean or minimal should the design be?

•	How will we use color to convey actions and intent?

•	How many steps in tone or contrast will there be?

•	How will typefaces be used to distinguish types of content?

•	How many increments in the typographic hierarchy will there be?

Designing components this way can help us find answers to these questions and gives
everyone involved options and opportunities to change their minds before any major
investment is made in design or development.

Using design sheets can also allow us to continue with design iterations, even while
other aspects of a website’s development are in progress. This helps us to break the ar-
chaic workflow that we imported from pre-press and print to the Web. You know the one:

Plan → Sign-Off → Design → Sign-Off → Development.

By working in a more flexible way, design can now take place at various stages, some-
times even before planning has been completed or after development has started. This
way, design becomes more deeply integrated and is continued throughout the develop-
ment cycle.

Style Tiles
The abstraction of design into the look and feel of elements is something that designer
Samantha Warren has been thinking about, too. She calls her technique style tiles.
Samantha explains:15

“A style tile is a visual “tray” of paint chips, fabric patterns, and color choices that
support the client’s goals. I have a Photoshop template with specifically masked
areas where […] I display samples of button styles, navigational treatments, and
typographic possibilities.”

For Samantha, style tiles are an effective tool for communication as well as component-
level design.16

15 Warren, Samantha. “Style Tiles as a Web Design Process Tool,” smashed.by/styletiles.
16 A more detailed overview of Samantha’s design process is presented on www.styletil.es.

CHAPTER 11

324

Becoming Fabulously Flexible: Designing Atoms and Elements

BOOTSTRAP

For others, page components can be building blocks for future designs. Take Mark Otto
and Jacob Thornton, a designer-developer combination who work for Twitter. They’re
the pair behind Bootstrap.17 The Web might not have edges, but it does have content. We
express that content through appropriate HTML elements:

•	headings, and their levels 1 to 6;

•	paragraphs, block quotes and text-level elements;

•	 lists: definition, ordered and unordered;

•	media: figures and captions and images;

•	 tables;

•	 forms: buttons, elements and labels.

As well as Twitter’s own grid system, Bootstrap includes design defaults for “typogra-
phy, forms, buttons, tables, grids, navigation, and more.” Bootstrap is interesting for a
number of reasons. Not only is it a solid development boilerplate, but the fact that it in-
cludes a comprehensive list of HTML elements, along with some default styles, makes
it an ideal starting point for a new design.

DO YOU DRIBBBLE?

Dribbble18 is a website where designers share small screenshots (maximum 400 by 300
pixels) of designs they’re working on.

Take a trip through Dribbble’s pages and you’ll find plenty of examples of compo-
nent-level design and the details that designers sweat. You’ll find navigation designs
and treatments for inline images. If forms are your thing, you’ll find styles for every
kind of form element, plus button styles for every state. Typography isn’t missing ei-
ther, with as many examples of typefaces and type treatments as you could want.

Dribbble’s shots are the perfect example of showing designed components without
layout. They show how we can design and then demonstrate to our bosses and custom-
ers a design direction in a format that doesn’t confuse style with layout.

17 Twitter Bootstrap, http://smashed.by/boots,
18 smashed.by/drbb

CHAPTER 11

325

Becoming Fabulously Flexible: Designing Atoms and Elements

Figure 11.1. At first you might wonder why a developer toolkit like Bootstrap is
relevant to a responsive designer’s workflow. You might be surprised to know that
Bootstrap is the perfect starting point for designing page components.

Figure 11.2. Dribbble shows designed components in a neutral environment.

CHAPTER 11

326

Becoming Fabulously Flexible: Designing Atoms and Elements

STYLE GUIDES

When you work on a project in which teams of people contribute, a thorough and
well-written style guide can be vital for maintaining a design’s integrity. While or-
ganizations use style guides for many purposes—publishers use them for spelling and
punctuation rules, and publicists use them for setting the tone of copy in written publi-
cations—on the Web, the best style guides clearly set out a website’s design house style.

One of the best recent examples of a comprehensive set of style guidelines comes
from the BBC. Its Global Experience Language (GEL)19 documents the BBC’s complete
visual language as used on the Web, with detailed information on typography, iconogra-
phy and the design of interface components such as overlays, accordions and carousels.

Email expert MailChimp20 has created its own user interface pattern library to docu-
ment how elements such as buttons, forms, tables and tabs should be styled. You might
wonder why style guides are important in a conversation about responsive design,
especially as style guides are commonly created to document design principles after a
website has been designed.

19 smashed.by/gel
20 smashed.by/mc

Figure 11.3. BBC’s Global Experience Language (GEL) 18 documents the
BBC’s complete visual language as used on the Web.

CHAPTER 11

327

Becoming Fabulously Flexible: Designing Atoms and Elements

Like Twitter’s Bootstrap, both the BBC’s GEL and MailChimp’s UI pattern library are
wonderful examples of component design. They detail how every element that will ap-
pear in a design should look, and they do so with little or no reference to layout.

The most thorough style guide doesn’t simply document a website’s design—it is its
design. So, why wait until the end of a process before making a style guide? Instead,
treat style guides as another example of component-level design. Use them to docu-
ment and then design every element that will appear on your pages. You can then use
them to demonstrate your design direction without being layout-specific, and use them
as tools to help you get sign-off without setting expectations about layout.

RETAINING STATIC VISUALS WHEN APPROPRIATE

I’ve found that designing components first pays real dividends with my clients. I’ve
seen projects run smoother, faster and with fewer misunderstandings. But designing
components first is a process that some people find hard to grasp. Because others work
in organizations processes where layout-specific static design visuals are still the cur-
rency between designers, developers and their bosses or customers, not everyone can
leave static visuals behind.

Figure 11.4. MailChimp has created its own user interface pattern library to document
how its UI elements should be styled.

CHAPTER 11

328

Becoming Fabulously Flexible: Designing Atoms and Elements

Designers need to see elements in relation to each other. That’s because sizes and pro-
portions matter, and there’s nothing quite like seeing how everything fits together. In
this situation, making a static visual of a design with one layout can be very informa-
tive. It’s something I do during almost every project.

We also can’t escape the fact that, over the years, our bosses and customers have
been so indoctrinated into expecting a full-page composition that some of them may be
unnerved when we show them a sheet containing just the design of components and no
layout. This is something that I experienced early on after switching to component-first
design, and it can sometimes require careful handling and reassurances that the result
will be better after adopting this process. It’s also why sometimes I’m forced to demon-
strate an example design to a client as a full-page static visual.

If our workflow forces us to stick with full-page static visuals, at least for a while,
does that mean we must abandon the advantages of designing components first? No.
Not if we set the right expectations. Specifically, our bosses and customers must learn
that the static visuals we might show them are simply extensions of the atmosphere of
a design and only one potential expression of it.

Design Atmosphere
If we must carry on using full-page static visuals, we can still extract the component
design and use it across screen sizes and devices. Let’s break down a design, any de-
sign, into its components:

•	Typography: typefaces, type treatments and white space.

•	Color: evoking mood and highlighting actions.

•	Texture: decorative aspects, including borders, shading and shapes.

•	Layout: elements arranged on a grid, horizontally and vertically.

First, let’s separate layout from those other constituents. What remains—the color, tex-
ture and typography—I like to call the atmosphere of a design, because I imagine every-
one’s been to a concert or a ball game where the atmosphere could have been described
as electric. I’ll bet we’ve all been to a party or two where the atmosphere was flat. Per-
haps you’ve been unlucky enough to sense two people fighting just by the atmosphere
in the room.

CHAPTER 11

329

Becoming Fabulously Flexible: Designing Atoms and Elements

In design, atmosphere describes the feelings we get that are evoked by color, texture
and typography. You might already think of atmosphere in different terms. You might
call it “feel”, “mood” or even “visual identity.” Whatever words you choose, the atmos-
phere of a design doesn’t depend on layout. It’s independent of arrangement and visual
placement. It will be seen, or felt, at every screen size and on every device.

While we or our organizations make the transition to newer and better design
workflows,21 understanding how to extract the atmosphere from a static visual or even
an existing website is an important skill. It’s one that developers as well as designers
should be quick to learn, because knowing how to see, extract and then rearrange ele-
ments as a layout changes is the key to good responsive Web design.

EXTRACTING THE ATMOSPHERE

Let’s look closely at a small selection of website designs. We’ll separate their atmosphere
and layout, and with each one we’ll look for what makes its atmosphere distinctive.

Food Sense

First is Food Sense,22 a beautifully designed, responsive website that’s all about “plant-
based eating” (see the next page). If we think in static terms, we might comment first
on its two-column desktop layout. But we’re looking deeper than that. We’re looking for
its atmosphere. We’ll break that down into color, texture and typography.

Color: Within the atmosphere of any design, color evokes moods and elicits emotions,
but we can also use color vocabulary for calls to actions, messages and other touch
points. Food Sense uses subtle shades of its green, black and white to bind elements of
the design together.

Texture: When I talk about texture, I don’t mean physical texture, although nothing is
stopping you from breaking out the faux leather and torn paper if you’re into that kind
of thing. Instead, texture refers to decorative aspects in a design, including line work
(borders, dividers and separators), shading and shape.

For example, we can describe line work. Are lines single, double, dashed? Are they
of a consistent width? Is there a hierarchy of dividing-line widths between minor and
major sections of content? If so, how’s that hierarchy structured?

21 Stephen Hay outlines a future-friendly workflow in the previous chapter in this book.
22 smashed.by/food

CHAPTER 11

330

Becoming Fabulously Flexible: Designing Atoms and Elements

How is content shaded? Do boxes have a flat color background or are they graduated or
patterned? Are the edges of boxes rounded or square? This is also a matter of texture.

Food Sense has flat colored shading for boxes and simple gray dashed and solid lines
that divide content regions. It has buttons and action links with subtle gray borders
and shadows. Inline content images have been given a white frame, made visible by
a gray border. Hand-drawn icons reinforce the friendly atmosphere of Food Sense’s
design.

Typography is perhaps the easiest of atmospheric elements to extract, but typography
means more than just choosing a typeface. Typographic atmosphere includes leading
(line height), tracking (letter spacing) as well as the white space separating elements.

Elliot Jay Stocks writes:23

“I feel that a typography-first, content-out approach to web design moves us one
step further away from the unnecessary distractions of design-for-design’s- sake
and one step closer to becoming true typographers.”

23 Jay Stocks, Elliot. “The Typography-Out Approach In The World Of Browser-Based Web Design,”
smashed.by/typeout

Figure 11.5. Food Sense website.

CHAPTER 11

331

Becoming Fabulously Flexible: Designing Atoms and Elements

Food Sense’s designers chose lowercase FF Tisa Web Pro for serif headings, body copy
and navigation. Their design allows for generous amounts of white space, giving it an
airy, open atmosphere.

Jamie Oliver

From studying the atmosphere of designs, our eyes quickly become attuned to their
differences. Staying with food, Jamie Oliver’s website24 has a very different look from
Food Sense. Now it’s your turn to extract the atmosphere from Jamie Oliver’s website
and break it down into color, texture and typography.

Color: The website uses a core combination of brown and blue, as evident in the logo.
Can you find a system of colors for links? How is color used in navigation?

Texture: How does the website use background images to create blocks of content? Do
you notice design patterns inside those panels? For example, how are headings sepa-
rated from the content below them? How are buttons styled? Do they have rounded
corners or square ones? Is there consistency?

24 smashed.by/jam

Figure 11.6. Jamie Olviers website.

CHAPTER 11

332

Becoming Fabulously Flexible: Designing Atoms and Elements

Typography: The website uses commonly installed fonts. Is there a recognizable
typographic hierarchy of headings? Are there differences between the types of body
copy? If so, what are they? Does the website feel open or cramped? How do padding and
margins affect the feeling of space within the design?

BBC Food

Finally, and staying with food once again, let’s examine the BBC’s food website,25 where
we can see parts of the BBC’s GEL guidelines making an appearance. Once again, we’re
not looking for layout. Instead, we’re looking for atmosphere and what makes this web-
site’s design distinctive from others with similar content or purpose.

BBC Food uses color to explain which elements are links. Its palette is subdued, perhaps
to emphasize the color in its photography. Where the BBC uses icons from its GEL icon
set, the icons are flat and single color, as are the backgrounds of content boxes.

The BBC keeps the edges of its boxes square and sharp. Where content overlaps
images, BBC Food’s designers use semi-transparent blocks of white or black. Images
themselves are largely untreated and are without borders of any kind.

25 smashed.by/bbc

Figure 11.7. BBC Food website.

CHAPTER 11

333

Becoming Fabulously Flexible: Designing Atoms and Elements

The BBC uses bold typography to “create strong hierarchies and drama across the
site.”26 The BBC’s default Web font is Arial, although dig in and you’ll find Helvetica
Neue for the Mac. It uses those typefaces both for headings and for body copy.

This is an exercise that will work on any website and especially with groups of de-
signers and developers working together. It’s become a key part of my responsive Web
design workshops and has proven particularly effective.

Becoming Fabulously Flexible
Whether we learn to design page components first or we learn to extract the atmos-
phere from static visuals, it’s no longer necessary for us to make separate Photoshop or
Fireworks visuals of layouts for every page—let alone every device. In fact, I’d go so far
as to say that the days of designing multiple static visuals are over, as we, our bosses
and our customers realize their inherent inaccuracies and inefficiencies. This means
that, whether we like it or not, we must find new ways to design responsively.

I know from my own work over the last twelve months, as I get deeper and deeper
into responsive Web design, that finding new ways to design and then communicate
those designs isn’t easy. Although I’ve been promoting the notion that websites needn’t
look the same in every browser for years, somehow letting go of control over layout has
been tough. I’ve come to realize that my job as a designer has fundamentally changed.
I can no longer expect to have the same level of control over layout across screen sizes
and devices as I experienced before.

There are significant upsides to responsive Web design for designers, though, espe-
cially in workflows that embrace flexibility. Now I can focus on sweating the details
of a design throughout the entire development process, not just at the beginning.
Instead of needing to explicitly describe how every layout for every screen size and
device should look, I can explain my thinking behind a design and then leave others to
interpret that design and adapt it while they develop. This is a workflow that’s worked
fabulously for me and my clients.

For this to work well, the developers I work with must also learn about design and
how to extract the atmosphere from it. They must take responsibility for and make
decisions about design. For some, this might seem like a daunting challenge, but the de-
velopers I’ve worked with have viewed it more as an opportunity to develop an under-
standing of and skills in a new area.

26 smashed.by/bbcfonts

CHAPTER 11

334

Becoming Fabulously Flexible: Designing Atoms and Elements

I said at the beginning of this chapter that responsive Web design asks more questions
than it offers answers, that it challenges the working relationships and interactions
between everyone involved in every process. I know that these challenges won’t always
be easy to overcome. But I’ve seen firsthand how keen designers and developers are to
solve these challenges, and how receptive our bosses and customers can be when they
experience the benefits that responsive Web design can bring. By working together, we
can make the Web the responsive place it was always meant to be.

About the Author
Andy Clarke has been called many things since he started design-
ing for the Web 10 years ago. His ego likes terms such as “Ambas-
sador for CSS,” “industry prophet” and “inspiring,” but he’s most
proud that Jeffrey Zeldman (the godfather of Web standards) once
called him a “triple-talented bastard.”

Andy runs Stuff and Nonsense, a tiny Web design studio where
he works with clients such as ISO, STV and the UK government. He
presents at Web design conferences worldwide and is the author
of Transcending CSS and the highly acclaimed Hardboiled Web
Design.

Index

“one-click” ordering, 49
@font-face, 100ff
<article>, 81
<aside>, 82
<figcaption>, 83
<figure>, 83
<footer>, 82
<header>, 82
<nav>, 83
<section>, 80, 81
<time>, 83
3-D Secure, 48
A/B testing, 44
accordion forms, 172
adaptive design, 33
adaptive prototyping, 304
Android, 201
angle gradients, 217
anticipation, 250
background-clip, 120
binary-framework matrix, 276
bitmaps, 203, 211, 220, 226
blank-canvas syndrome, 244
border images, 121
box-sizing, 129
brand, 39, 14, 232
breakpoint graph, 302
breakpoints, 302
browser engines, 96
browser support, 32
budget, 53
business, 10, 12, 20
card payments, 46, 176
centering, vertical and horizontal, 107ff.
client-side storage, 88
cloud hosting, 64
CMS, 39ff.
Cocoa, 222, 260, 270, 277ff.
color management, 207, 210
color profile, 206
completeness meter, 180
component-level design, 327
components first, 321
concave and convex shading, 213ff.
content inventory, 289
content reference wireframing, 291ff.
continuous client, 268ff.
copywriting, 175, 167
cross-platform, 257, 276
CSS media queries, 137, 293, 312, 322
CSS Percentage Problem, 128
CSS selectors, 136, 138, 142
CSS selectors, 125
CSS transitions, 129, 138, 159
CSS workarounds, 94
CSS-generated content, 139
CSS3, 94
customer service, 186ff., 60
dark patterns, 192
databases, 61
dedicated server, 64
default values, 174
delight, 191, 250
design atmosphere, 328
design patterns, 239
design persona, 244
device classes, 303
device testing, 222
device-agnostic thinking, 288
disguised ad, 192
DNS, 68, 69
DOCTYPE, 75

documents-to-applications continuum, 271
DOM, 136, 142
drag and drop, 155, 156
e-commerce, 38ff, 44, 186
Electronic Point-Of-Sale (EPOS) System, 52
emotional experiences, 240, 244
emotional response test, 28
engagement methods, 250, 169
event delegation, 140, 103
experience enhancement, 301
exporting images, 223
fallbacks, 94
feature-detection, 95
FileReader, 155, 156, 158
flash test, 28
flex unit, 111
Flexbox (Flexible Box layout), 107ff, 246
font-stretch, 103
forms validation, 47, 145, 176
forms, sign-up, 165ff., 193, 290
gradients, 217, 114
gradual engagement, 169
hidden survey, 165
hosting, 60
HTML5, 72
HTML5 Canvas, 140
HTML5 Local Storage, 88, 98
HTML5 semantic outlining, 84
HTML5 Session Storage, 88, 98
HTML5 Websockets, 181
hyphenation, 104
IE 6, 136, 137, 159, 88
IE 7, 77
IE 8, 90, 129, 136
immersive apps, 277ff.
incremental change, 12
interfaces, 175, 164, 184, 206, 238
iOS, 201, 222, 260, 283, 303
JavaScript, 76
jQuery, 136
layout techniques, 106
linear design, 298
marketing, 190, 179, 187, 238
mobile, 184, 32ff.
mobile first, 296
mood boards, 321, 246, 23ff.
multiple backgrounds, 113
multiple gradients, 114
native, 258, 33, 184, 198, 201
navigation, 83
no-reply, 189
non-immersive apps, 278ff.
Objective-C, 279, 283, 238
off-the-shelf software, 43, 48, 52, 57
open source, 55
outline, 116ff.
outside-in design, 257
patterns, 177, 219, 114
payment gateway, 47
Payment Service Provider (PSP), 47, 48, 49
PayPal, 44, 46
Payment Card Industry Data Security Standard
(PCI DSS), 49
personality, 233
PhoneGap, 276ff.
Photoshop, 198
pixel density, 199, 221
pixel grid, 204, 211
Pixels Per Meter (PPM), 221
please-reply, 189
polyfills, 159, 111
PPI, 199, 205

principle of universailty, 271
progressive enhancement, 256, 303
progressive log-in, 183
progressive sign-up, 170
proprietary plugins, 8
psychology, 26
querySelector, 138
querySelectorAll, 138
real-time updates, 181
realignment, 12
realism, 200, 216
redesign indicators, 13
refactoring, 56, 65
rem unit, 97
reset styles, 80,
responsive context, 319
responsive prototyping, 304
responsive Web design, 312ff, 33, 43, 256, 273, 304
Retina display, 199, 205, 219ff., 226
scaling, 201
scope creep, 15
screen sizes, 199
server-side languages, 61
shading, 213
shapes, 211
shared hosting, 64, 67
simulators, 273
skeuomorphics, 200
slices, 225
Smart Objects, 220
Smashing Book 4, 2013
Software As A Service (SaaS), 46, 58
source-order independence, 112, 297
spherical shapes, 215
staging server, 65, 67
stakeholder interviews, 20
static visuals, 314, 327
storytelling, 178
structured content, 288, 296
style guides, 250, 326
style tiles, 323
sub-pixel patterns, 222
surveying, 27,
SVG, 98, 122, 203
target, 126
textures, 219, 249
third-party systems, 51
typography, 249, 328
universally accessible, 264
uptime guarantee, 63
usability testing, 29
user experience, 164, 244, 256
user interface, 200, 12
user personas, 233, 22
user research, 233, 19
user testing, 25
vendor prefixes, 96
version control, 66
vertical rhythm, 98ff.
virtual private server, 64
voice and tone, 251, 323
W3C, 73, 74
WAI-ARIA, 86
Web apps, 202, 262ff.
Web platform, 264
Web Standards, 8
Web typography, 97
WebKit, 74, 96, 107, 277
Windows Metro, 202, 221
wireframing, 24, 291ff.
WordPress, 43, 58, 60
Xcode, 221, 283

Index

	cover-sm-book-3-test
	digital-edition-2012-06-18_ml
	cover-sm-book-3-test
	digital-edition-2012-06-18_ml

